I am an engineering student interested in astrophysics. I started to watch a video about Penrose diagrams, since I wanted to find out how they work. Around the seventh minute the lecturer in the video said that in order to create a Penrose Diagram "non-compact"coordinates (where at least one goes against infinity) are replaced by null coordinates (which are still non-compact). He then went ahead and defined a coordinate function $u$ as null coordinate if its $$g(\frac{\partial}{\partial u},\frac{\partial}{\partial u})=0.$$ He also noted that such coordinates are "light-like". Well, I have a hard time to understand what he means. First, I am not familiar with his notation: I assume $g$ is the divergence? But the divergence of what field? Why does light have the property of divergence equals zero? I would be grateful for some clarification.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
Yesterday, I understood what it means to say that the moon is constantly falling (from a lecture by Richard Feynman ). In the picture below ...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
No comments:
Post a Comment