Thursday, 19 March 2015

mathematics - Dividing the first 20 numbers into 3 lists


Place every number from 1 to 20 into one of three lists $P$, $Q$ or $O$, such that any number from $P$ added to any number from $Q$ gives a prime. What is the fewest number of elements that can be in $O$? Note that $P$ and $Q$ cannot be empty.


Good luck!



Answer



It is possible to solve this without a computer search. The proof of $\min|O|$ is below.



These are all the odd prime numbers $\le20+19=39$; colours important later. $$\color{red}3,\color{blue}5,\color{green}7,\color{orange}{11},\color{purple}{13},\color{cyan}{17},\color{brown}{19},\color{silver}{23},\color{lightgreen}{29},31,\color{gold}{37}.$$ Let $P$ contain even integers only and $Q$ odd without loss of generality. We can then form the following table, where $\checkmark$ indicates whether the entry is prime and the colours correspond to the prime numbers above. The superscripts next to each number show how many times the total is prime. \begin{array}{c|c}+&2^{[7]}&4^{[7]}&6^{[6]}&8^{[5]}&10^{[6]}&12^{[6]}&14^{[5]}&16^{[5]}&18^{[5]}&20^{[4]}\\\hline1^{[7]}&\color{red}\checkmark&\color{blue}\checkmark&\color{green}\checkmark&&\color{orange}\checkmark&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&\\\hline3^{[7]}&\color{blue}\checkmark&\color{green}\checkmark&&\color{orange}\checkmark&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark\\\hline5^{[6]}&\color{green}\checkmark&&\color{orange}\checkmark&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&\\\hline7^{[5]}&&\color{orange}\checkmark&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&&\\\hline9^{[6]}&\color{orange}\checkmark&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark\\\hline11^{[6]}&\color{purple}\checkmark&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark&\checkmark\\\hline13^{[5]}&&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark&\checkmark&\\\hline15^{[5]}&\color{cyan}\checkmark&\color{brown}\checkmark&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark&\checkmark&&\\\hline17^{[5]}&\color{brown}\checkmark&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark&\checkmark&&&\color{gold}\checkmark\\\hline19^{[4]}&&\color{silver}\checkmark&&&\color{lightgreen}\checkmark&\checkmark&&&\color{gold}\checkmark&\end{array} Clearly, $|S|=1\implies\max|S^*|=7\implies\min|O|=12$ where $S\in\{P,Q\}$ and $S\cup S^*=P\cup Q$. In particular, this yields the solutions $$[P,Q]=\begin{cases}[\{2\},\{1,3,5,9,11,15,17\}]\\ [\{4\},\{1,3,7,9,13,15,19\}]\\ [\{2,4,6,10,12,16,18\},\{1\}]\\ [\{2,4,8,10,14,16,20\},\{3\}]\end{cases}$$ due to the symmetry of $\checkmark$ in the table. Now, suppose $|S|=2$. It can be seen that $|O|$ is minimised and is equal to $12$ again when $|S^*|=6$, with $S=\{4,10\},\{3,9\}$ as they are the instances where $\checkmark$ appears in both columns/rows the most times. In particular, this yields the solutions $$[P,Q]=\begin{cases}[\{4,10\},\{1,3,7,9,13,19\}]\\ [\{3,9\},\{2,4,8,10,14,20\}]\end{cases}.$$ This means that any further solutions with $|S|>2$ must contain either $\{4,10\}$ or $\{3,9\}$. Again, due to symmetry, only the former case will be considered. Of the rows $1,3,7,9,13,19$, the highest number of checkmarks that appear in columns other than $4,10$ is $16$, with $4$ checkmarks at $1,3,7,13$. Therefore, if $|S|=3$, $\max|S^*|=4$ so $\min|O|=13>12$. As no other column contains checkmarks at all of $1,3,7,13$, it can be concluded that $\min|O|>12\,\forall |S|>2$. The result that $\min|O|=12$ follows. $\square$




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...