Consider a photon coming from the infinity in a unbounded orbit to a Schwarzschild black hole (Schwarzschild radius $r_{s}$) (see this for illustration). Its impact parameter is $b$ and its distance of closest approach is $r_{0}$ with $$b^2=\frac{r_{0}^{3}}{r_{0}-r_{s}}$$.
Then its trajectory in polar coordinates is defined by :
$$\frac{d\varphi}{dr} = \frac{1}{r^2\sqrt{\frac{1}{b^2}-\left(1-\frac{r_s}{r}\right)\frac{1}{r^2}}}$$
Consequently : $$\varphi\left(r\right) = \int_{r_{0}}^{r} \frac{dp}{p^2\sqrt{\frac{1}{b^2}-\left(1-\frac{r_s}{p}\right)\frac{1}{p^2}}}$$
and one can compute the total deviation using : $\Delta\varphi = 2\times\left(\lim_{r\to+\infty}\varphi\left(r\right)-\frac{\pi}{2}\right)$
But my question is : how can I plot/draw the trajectory using the integral expression of $\varphi\left(r\right)$ ?
Because if I compute : $$f\left(r\right) = 2\times\left(\int_{r_{0}}^{r} \frac{dp}{p^2\sqrt{\frac{1}{b^2}-\left(1-\frac{r_s}{p}\right)\frac{1}{p^2}}}-\frac{\pi}{2}\right)$$ I obtain $f\left(r_{0}\right) = -\pi$, and then $f$ increases up to zero, crosses zero, and tends to its positive value at infinity $\Delta\varphi$. It does not make sense for me and I do not understand how to compute the trajectory from that.
If I compute : $$g\left(r\right) = \int_{r_{0}}^{r} \frac{dp}{p^2\sqrt{\frac{1}{b^2}-\left(1-\frac{r_s}{p}\right)\frac{1}{p^2}}}$$ it starts from $0$, and increase up to $\frac{\pi}{2}+\frac{\Delta\varphi}{2}$.
I would like to compute the trajectory in the $\left(x, y\right)$ plane, so how to use the values of $f\left(r\right)$ or $g\left(r\right)$ to compute the function $y\left(x\right)$ ?
No comments:
Post a Comment