Sunday, 17 May 2015

hamiltonian formalism - Finding action-angle variables


Given a 1 d.o.f Hamiltonian $H(q,p)$ what is the general procedure for finding action angle variables $(I, \theta)$?


I have read the Wikipedia page on action angle variables and canonical transforms but have difficulty applying the general methods to specific problems. Can someone explain the method to me using a simple general example?



Answer



In local coordinates the canonical transformation to action angle coordinates $(q,p)\rightarrow (Q,P)$ can be related by, \begin{equation} \boxed{P_i=\frac{1}{2\pi}\oint p_idq^i \ \ \ \ \ \text{and}\ \ \ \ \ Q^i=\frac{\partial }{\partial P_i}\int p_idq^i} \end{equation} For Example:


Consider the one dimensional harmonic oscillator with the following Hamiltonian $H=\frac 1{2m}\big[p^2+m^2\omega ^2q^2\big]$. Rearrange this for $p$ and take the hypersurface $H=E$. \begin{equation} p=\pm \sqrt{2mE-m^2\omega ^2q^2} \end{equation} Then use the above equation to compute $P$. \begin{equation} P=\frac{1}{2\pi }\oint \sqrt{2mE-m^2\omega ^2q^2}dq \end{equation} The integral is now over $0$ to $2\pi$ which is easier to handle. This works out as, \begin{equation} \frac {1}{2\pi}\oint ^{2\pi}_{0}\cos^2Q\ dQ\cdot \frac {2E}{\omega} =\frac{E}{\omega} \end{equation} Therefore we have used the quoted formula to compute the action variable for the harmonic oscillator.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...