Given a 1 d.o.f Hamiltonian $H(q,p)$ what is the general procedure for finding action angle variables $(I, \theta)$?
I have read the Wikipedia page on action angle variables and canonical transforms but have difficulty applying the general methods to specific problems. Can someone explain the method to me using a simple general example?
Answer
In local coordinates the canonical transformation to action angle coordinates $(q,p)\rightarrow (Q,P)$ can be related by, \begin{equation} \boxed{P_i=\frac{1}{2\pi}\oint p_idq^i \ \ \ \ \ \text{and}\ \ \ \ \ Q^i=\frac{\partial }{\partial P_i}\int p_idq^i} \end{equation} For Example:
Consider the one dimensional harmonic oscillator with the following Hamiltonian $H=\frac 1{2m}\big[p^2+m^2\omega ^2q^2\big]$. Rearrange this for $p$ and take the hypersurface $H=E$. \begin{equation} p=\pm \sqrt{2mE-m^2\omega ^2q^2} \end{equation} Then use the above equation to compute $P$. \begin{equation} P=\frac{1}{2\pi }\oint \sqrt{2mE-m^2\omega ^2q^2}dq \end{equation} The integral is now over $0$ to $2\pi$ which is easier to handle. This works out as, \begin{equation} \frac {1}{2\pi}\oint ^{2\pi}_{0}\cos^2Q\ dQ\cdot \frac {2E}{\omega} =\frac{E}{\omega} \end{equation} Therefore we have used the quoted formula to compute the action variable for the harmonic oscillator.
No comments:
Post a Comment