Tuesday, 12 May 2015

quantum mechanics - What is the connection between geometry of physical space and Hilbert space?


In Quantum Mechanis (QM), the dynamical variables are the (quantized) coordinates $x_j$ and their canonical conjugate $p_j = -i\partial_j$ with the commutation relation $[x_j,p_k]=i\delta_{jk}$ acting as operators on the quantum state space.


What exactly happens to that state space when we change the underlying geometry or topology of "physical" space - the (spacetime) manifold that serves as the background for the quantum system? How does this change in geometry/topology reflect on the Hilbert space?


In Quantum Field Theory (QFT), the dynamical objects are the (quantized) fields $\phi (x^\mu)$ and the coordinates $x_i$ are demoted to mere labels. What happens in this case? How does a change in geometry/topology alter the resulting Fock space?


I am new to this area, so what I need would be a basic explanation (for QM and QFT) how to make the connection between the two concepts geometry/topology of physical space and resulting properties of the quantum state space - if such a wish makes sense at all.



Answer



OP comments as an example of what the question is about:




Let us consider the case of an electron confined to a curved surface. Does the geometry of the background have any consequences for the state space?



A simple answer can be given for ordinary QM: A (scalar, i.e. spin-0) particle moving in one-dimension has state space $L^2(\mathbb{R})$, a particle in three dimensions has state space $L^2(\mathbb{R}^3)$. The state space of a particle moving on a submanifold $\mathcal{M} \subset \mathbb{R}^3$, e.g. a particle moving on any smooth surface, is then by analogy simply $L^2(\mathcal{M})$ i.e. the functions whose square-integral over $\mathcal{M}$ exists.


Note that Fourier (i.e. relating the position and momentum representations) transforms on manifolds that are not $\mathbb{R}^n$ are somewhat complicated, cf. this math.SE post.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...