Suppose inertia frame O′ is moving at velocity v relative to inertia frame O. Let the coordinate systems of O be denoted by (x,y,z) and the corresponding one on O′ be denoted by (x′,y′,z′). (Note that v need not be along any of the axis directions).
Now suppose we apply an orthonormal matrix A on the system (x,y,z) and obtain another coordinate system (u,v,w) of O. Now, we can apply Lorentz transformation on (t,u,v,w) to obtain the corresponding system (t′,u′,v′,w′) on O′.
Is it true that the coordinate system (u′,v′,w′) is related to (x′,y′,z′) also by the orthonormal matrix A?
I am abit skeptical because I know directions and angles might change after transformations.
Update: I thought a bit more and here are my thoughts. Essentially, it boils down to this: Given the definitions of O about what x-length, y-length, etc. mean, how does O′ actually define what x′-length, y′-length, etc. mean? Definitely O′ cannot be doing it at random. x′ must somehow relate to x. To do this, O′ observes the time-space structure of O (which will be "distorted" from the view of O′), and then use the Lorentz transformation to define his time-space structure. In summary then, (u′,v′,w′) will be related to (x′,y′,z′) via A by definition of how the primed coordinate systems are defined. Not sure if this is right.
Answer
The answer is YES. It's true that the coordinate system (u′,v′,w′) is related to (x′,y′,z′) also by the orthonormal matrix A, at least under the Lorentz Transformations used in the following. But please, let use other symbols (for example it's custom to use υ for the algebraic magnitude of the velocity v=υn).
SECTION A : The answer is YES.
Let the two coordinate systems Ox1x2x3t and O′x′1x′2x′3t′ with 4-vectors respectively
X=[x1x2x3x4]=[x1x2x3ct]=[xct],X′=[x′1x′2x′3x′4]=[x′1x′2x′3ct′]=[x′ct′]
The system O′x′1x′2x′3t′ is moving with velocity v=υn=υ(n1,n2,n3), υ∈(−c,+c), with respect to Ox1x2x3t so they are related by a Lorentz Transformation L(v), a function ofv:
X′=L(v)X
We'll use such a Lorentz transformation where for the inverse one L−1(v)=L(−v)
Suppose now that the system of coordinates Ox1x2x3t undergoes a transformation to Ow1w2w3t by a rotation
W=AX=[A00T1]X where A= 3×3 rotation matrix, 0 the 3×1 null column vector and 0T its transposed 1×3 null row vector
0=[000],0T=[000]
Now, let a system Ow′1w′2w′3t′ moving with the same velocity with respect to Ow1w2w3t as O′x′1x′2x′3t′ with respect to Ox1x2x3t. Then
W′=L(Av)W
where the velocity argument of the Lorentz transformation is now Av as seen by Ow1w2w3t and not v as seen by Ox1x2x3t.
From equations (A-02), (A-03), (A-04) and (A-06) the relation of W′ and X′ is
W′=L(Av)W=L(Av)AX=L(Av)AL(−v)X′=A′X′ where A′=L(Av)⋅A⋅L(−v) The question is if A′≡A(???) in which case (A-08) is expressed as A⋅L(v)=L(Av)⋅A(???)
We'll make use of the following kind of Lorentz Transformations, see SECTION B, equations (B-27), (B-28) there.
L(v)=[1+(γ−1)n21(γ−1)n1n2(γ−1)n1n3−γυcn1(γ−1)n2n11+(γ−1)n22(γ−1)n2n3−γυcn2(γ−1)n3n1(γ−1)n3n21+(γ−1)n23−γυcn3−γυcn1−γυcn2−γυcn3γ] and in block form L(v)=[I+(γ−1)nnT−γυcn−γυcnTγ]
where n a 3×1 unit column vector and nT its transposed 1×3 unit row vector
n=[n1n2n3],nT=[n1n2n3] and nnT a linear transformation, the vectorial projection on the direction n nnT=[n1n2n3][n1n2n3]=[n21n1n2n1n3n2n1n22n2n3n3n1n3n2n23]
L−1(v)=L(−v)=[I+(γ−1)nnT+γυcn+γυcnTγ]
L(Av)=[I+(γ−1)AnnTAT−γυcAn−γυcnTATγ]
A⋅L(−v)=[A00T1][I+(γ−1)nnT+γυcn+γυcnTγ]
A⋅L(−v)=[A+(γ−1)AnnT+γυcAn+γυcnTγ]
L(Av)⋅A⋅L(−v)=[I+(γ−1)AnnTAT−γυcAn−γυcnTATγ][A+(γ−1)AnnT+γυcAn+γυcnTγ]=[A′ρσTa] Since AAT=I=ATA and nTn=1
a=(−γυcnTAT)(+γυcAn)+γ2=−(γυc)2nTATAn+γ2=1
ρ=[I+(γ−1)AnnTAT](+γυcAn)−γ2υcAn=γυcAn+γ(γ−1)υcAnnTATAn−γ2υcAn=0 σT=(−γυcnTAT)[A+(γ−1)AnnT]+γ2υcnT=−γυcnTATA−γ(γ−1)υcnTATAnnT+γ2υcnT=0T and finally A′=[I+(γ−1)AnnTAT][A+(γ−1)AnnT]+(−γυcAn)(+γυcnT)=A+(γ−1)AnnT+(γ−1)AnnTATA+(γ−1)2AnnTATAnnT−(γυc)2AnnT=A+2(γ−1)AnnT+(γ−1)2AnnT−(γυc)2AnnT=A So equations (A-09) and (A-10) are valid A′≡A A⋅L(v)=L(Av)⋅A
SECTION B : The Lorentz Transformation, equations (A-11) & (A-12).
In the Figure above the so called Standard Configuration is shown. The system O′x′y′z′t′ is moving with velocityvo=υe1, υ∈(−c,+c), with respect to Oxyzt along their common x-axis.
Using the four-vectors R=[xyzct]=[rct],R′=[x′y′z′ct′]=[r′ct′] the LT for the Standard Configuration is [x′y′z′ct′]=[γ00−γυc0 1 0 00010−γυc00γ][xyzct] or R′= B R where B is the 4x4 matrix representation of LT between the two systems in Standard Configuration B(υ) = [γ00−γυc0 1 0 00010−γυc00γ] It's clear that B is a function of the real scalar parameter of velocity υ.The velocity parameter υ in not necessarily the norm of the velocity vector, that is non-negative. Negative values mean translation towards the negative values of the axis Ox.
Also γ is the well-known factor γ def≡ (1−υ2c2)−12=1√1−υ2c2
We must note at this point that B has 3 main properties : (1) it's symmetric (2) its inverse is this the same with inverted υ and (3) it's of unit determinant :
BT(υ)=B(υ),B−1(υ)=B(−υ),det In order to make the Standard Configuration more general, that is not restricted to velocities parallel to the common axis \ Ox\equiv Ox^{'}, we make a rotation \;S\; of spatial coordinate system from \ (x,y,z)\equiv\mathbf{r}\ to \ (x_1,x_2,x_3)\equiv\mathbf{x}\ such that the velocity \begin{equation} \mathbf{v}_{0}=(\upsilon,0,0)=\upsilon(1,0,0)=\upsilon \mathbf{e}_{1} \tag{B-07} \end{equation} of system \ O^{'}x^{'}y^{'}z^{'}\ relatively to \ Oxyz\ , to be transformed to \begin{equation} \mathbf{v}=(\upsilon_1,\upsilon_2,\upsilon_3)=\upsilon(n_1,n_2,n_3)=\upsilon \mathbf{n} \tag{B-08} \end{equation} where \ \mathbf{n}=(n_1,n_2,n_3)\ is a unit vector. In order to keep the spatial coordinate system right orthonormal we choose any orthogonal matrix \;S\; with positive unit determinant : \begin{equation} S=\begin{bmatrix} &s_{11}&s_{12}&s_{13}&\\ &s_{21}&s_{22}&s_{23}&\\ &s_{31}&s_{32}&s_{33}& \end{bmatrix} \tag{B-09} \end{equation}
Since we must have \begin{equation} S\mathbf{v}_{0}=\mathbf{v} \tag{B-10} \end{equation} or \begin{equation} \begin{bmatrix} &s_{11}&s_{12}&s_{13}&\\ &s_{21}&s_{22}&s_{23}&\\ &s_{31}&s_{32}&s_{33}& \end{bmatrix} \begin{bmatrix} &1&\\ &0&\\ &0& \end{bmatrix} = \begin{bmatrix} &n_1&\\ &n_2&\\ &n_3& \end{bmatrix} \tag{B-11} \end{equation} then \begin{equation} \begin{bmatrix} &s_{11}&\\ &s_{21}&\\ &s_{31}& \end{bmatrix} = \begin{bmatrix} &n_1&\\ &n_2&\\ &n_3& \end{bmatrix} \tag{B-12} \end{equation} The rows or columns of \;S\; constitute a right orthonormal system, so \begin{equation} SS^{\rm{T}}=I=S^{\rm{T}}S \tag{B-13} \end{equation} and \begin{equation} S^{-1}=S^{\rm{T}} \tag{B-14} \end{equation} The 4\times4 matrix is in block form \begin{equation} \Bbb{S}\ =\ \begin{bmatrix} & S &\mathbf{0}&\\ &&&\\ &\mathbf{0}^{\rm{T}}&\ \ 1\ \ \ &\\ \end{bmatrix} \tag{B-15} \end{equation} where, as in definitions (A-05) \begin{equation} \boldsymbol{0}= \begin{bmatrix} 0\\ 0 \\ 0 \end{bmatrix} \quad , \quad \boldsymbol{0}^{\rm{T}}= \begin{bmatrix} 0&0&0 \end{bmatrix} \tag{A-05} \end{equation}
Now, if in the accented system \ O^{\boldsymbol{\prime}}x^{\boldsymbol{\prime}}y^{\boldsymbol{\prime}}z^{\boldsymbol{\prime}}\ the same exactly spatial transformation \;S\; is used from \ (x^{\boldsymbol{\prime}},y^{\boldsymbol{\prime}},z^{\boldsymbol{\prime}})\equiv\mathbf{r}\ to \ (x_1^{\boldsymbol{\prime}},x_2^{\boldsymbol{\prime}},x_3^{\boldsymbol{\prime}})\equiv\mathbf{x}^{\boldsymbol{\prime}}\ then
\begin{equation} \mathbf{X} = \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} \\ \mathbf{x}\\ \\ ct \end{bmatrix} =\Bbb{S}\mathbf{R}= \begin{bmatrix} \\ S\mathbf{r}\\ \\\ ct \end{bmatrix} \quad , \quad \mathbf{X}^{\boldsymbol{\prime}} = \begin{bmatrix} x_1^{\boldsymbol{\prime}}\\ x_2^{\boldsymbol{\prime}}\\ x_3^{\boldsymbol{\prime}}\\ x_4^{\boldsymbol{\prime}} \end{bmatrix} = \begin{bmatrix} \\ \mathbf{x}^{\boldsymbol{\prime}}\\ \\ ct^{\boldsymbol{\prime}}\\ \end{bmatrix} =\Bbb{A}\mathbf{R}^{\boldsymbol{\prime}}= \begin{bmatrix} \\ S\mathbf{r}^{\boldsymbol{\prime}}\\ \\ ct^{\boldsymbol{\prime}}\\ \end{bmatrix}\\ \tag{B-16} \end{equation} and we proceed to find the transformation between the new coordinates, \;\mathbf{X}\; and \;\mathbf{X}^{\boldsymbol{\prime}}\;, from the relation between \;\mathbf{R}\; and \;\mathbf{R}^{\boldsymbol{\prime}}\;, see equations (B-02) to (B-04):
\begin{eqnarray} \mathbf{R}^{\boldsymbol{\prime}} &=& \Bbb{B}\mathbf{R} \nonumber\\ \Bbb{S}\mathbf{R}^{\boldsymbol{\prime}} &=& \Bbb{S}\Bbb{B}\mathbf{R} \nonumber\\ \Bbb{S}\mathbf{R}^{\boldsymbol{\prime}} &=& \left[\Bbb{S}\Bbb{B}\Bbb{S}^{-1}\right]\left[\Bbb{S}\mathbf{R}\right] \nonumber\\ \mathbf{X}^{\boldsymbol{\prime}} &=& \left[\Bbb{S}\Bbb{B}\Bbb{S}^{-1}\right]\mathbf{X} \nonumber\\ \mathbf{X}^{\boldsymbol{\prime}} &=& \Bbb{L}\mathbf{X} \tag{B-17} \end{eqnarray} So the new matrix for the Lorentz Transformation is \begin{equation} \Bbb{L}=\Bbb{S}\Bbb{B}\Bbb{S}^{-1}\\ \tag{B-18} \end{equation} and by equations (B-13)and (B-14) \begin{equation} \Bbb{S}^{-1}= \begin{bmatrix} &S^{-1}\ &\boldsymbol{0}&\\ &&&\\ &\boldsymbol{0}^{\rm{T}}& 1 &\\ \end{bmatrix} = \begin{bmatrix} & S^{\rm{T}}&\boldsymbol{0}&\\ &&&\\ &\boldsymbol{0}^{\rm{T}}& 1 &\\ \end{bmatrix} = \Bbb{S}^{\rm{T}} \tag{B-19} \end{equation} The 4\times4 matrix \;\Bbb{B}\; defined by equation (B-04) is expressed in block form \begin{equation} \Bbb{B} = \begin{bmatrix} &B&-\;\dfrac{\gamma \mathbf{v}_{0}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}_{0}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \tag{B-20} \end{equation} where \;B\; is the 3\times3 matrix
\begin{equation} B= \begin{bmatrix} &\gamma&0&0&\\ &0&1&0&\\ &0&0&1&\\ \end{bmatrix} \tag{B-21} \end{equation} and \begin{equation} \mathbf{v}_{0}\equiv \begin{bmatrix} \upsilon\\ 0\\ 0\\ \end{bmatrix} =\upsilon \mathbf{e}_{1} \ \ \text{ with transpose }\ \ \mathbf{v}_{0}^{\rm{T}}= \begin{bmatrix} \ \ \upsilon\ \ 0\ \ 0\ \\ \end{bmatrix} \tag{B-22} \end{equation} So \begin{eqnarray} \Bbb{L}&=& \Bbb{S}\Bbb{B}\Bbb{S}^{-1}=\Bbb{S}\Bbb{B}\Bbb{S}^{\rm{T}} \nonumber\\ && \nonumber\\ &=& \begin{bmatrix} &S&\hspace{5mm}\mathbf{0}&\\ &\mathbf{0}^{\rm{T}}&\hspace{5mm}1&\\ \end{bmatrix} \begin{bmatrix} &B&-\;\dfrac{\gamma \mathbf{v}_{0}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}_{0}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \begin{bmatrix} &S^{\rm{T}}&\hspace{5mm} \mathbf{0}&\\ &\mathbf{0}^{\rm{T}}&\hspace{5mm}1&\\ \end{bmatrix} \nonumber\\ && \nonumber\\ &=& \begin{bmatrix} &SB&-\;\dfrac{\gamma S\mathbf{v}_{0}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}_{0}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \begin{bmatrix} &S^{\rm{T}}& \mathbf{0}&\\ &\mathbf{0}^{\rm{T}}&1&\\ \end{bmatrix} \nonumber\\ && \nonumber\\ &=& \begin{bmatrix} &S B&-\;\dfrac{\gamma \mathbf{v}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}_{0}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \begin{bmatrix} &S^{\rm{T}}& \mathbf{0}&\\ &\mathbf{0}^{\rm{T}}&1&\\ \end{bmatrix} \nonumber\\ && \nonumber\\ &=& \begin{bmatrix} &SBS^{\rm{T}}&-\;\dfrac{\gamma \mathbf{v}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \nonumber \end{eqnarray} that is \begin{equation} \Bbb{L}= \begin{bmatrix} &SBS^{\rm{T}}&-\;\dfrac{\gamma \mathbf{v}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}^{\rm{T}}}{c}&\ \ \gamma\ \ \ &\\ \end{bmatrix} \tag{B-23} \end{equation}
For the 3\times3 matrix \;SBS^{\rm{T}}\; we have \begin{equation} \begin{split} SBS^{T}& \quad = \quad \begin{bmatrix} &s_{11}&s_{12}&s_{13}&\\ &s_{21}&s_{22}&s_{23}&\\ &s_{31}&s_{32}&s_{33}& \end{bmatrix} \begin{bmatrix} &\gamma&0&0&\\ &0&1&0&\\ &0&0&1& \end{bmatrix} \begin{bmatrix} &s_{11}&s_{21}&s_{31}&\\ &s_{12}&s_{22}&s_{32}&\\ &s_{13}&s_{23}&s_{33}& \end{bmatrix} \\ &\\ & \quad = \quad \begin{bmatrix} &\gamma s_{11}&s_{12}&s_{13}&\\ &\gamma s_{21}&s_{22}&s_{23}&\\ &\gamma s_{31}&s_{32}&s_{33}& \end{bmatrix} \begin{bmatrix} &s_{11}&s_{21}&s_{31}&\\ &s_{12}&s_{22}&s_{32}&\\ &s_{13}&s_{23}&s_{33}& \end{bmatrix} \\ &\\ & \stackrel{(B-13)}{=} \begin{bmatrix} &1+(\gamma-1)s_{11}^{2}&\ \ (\gamma-1)s_{11}s_{21}\ \ &(\gamma-1)s_{11}s_{31}&\\ &&&&\\ &(\gamma-1)s_{21}s_{11}&\ \ 1+(\gamma-1)s_{21}^{2}\ \ &(\gamma-1)s_{21}s_{31}&\\ &&&&\\ &(\gamma-1)s_{31}s_{11}&\ \ (\gamma-1)s_{31}s_{21}\ \ &1+(\gamma-1)s_{31}^{2}& \end{bmatrix}\\ &\\ & \stackrel{(B-12)}{=} \begin{bmatrix} &1+(\gamma-1)n_1^{2}&\ \ (\gamma-1)n_1n_2\ \ &(\gamma-1)n_1n_3&\\ &&&&\\ &(\gamma-1)n_2n_1&\ \ 1+(\gamma-1)n_2^{2}\ \ &(\gamma-1)n_2n_3&\\ &&&&\\ &(\gamma-1)n_3n_1&\ \ (\gamma-1)n_3n_2\ \ &1+(\gamma-1)n_3^{2}& \end{bmatrix}\\ &\\ & \quad = \quad I+(\gamma-1) \begin{bmatrix} n_1\\ \\ n_2\\ \\ n_3 \end{bmatrix} \begin{bmatrix} n_1\ \ n_2\ \ n_3 \end{bmatrix} \quad = \quad I+(\gamma-1)\mathbf{n}\mathbf{n}^{\rm{T}} \end{split} \tag{B-24} \end{equation} and finally \begin{equation} SBA^{T}= I+(\gamma-1)\mathbf{n}\mathbf{n}^{\rm{T}} \tag{B-25} \end{equation} where \begin{equation} \mathbf{n}\equiv \begin{bmatrix} n_1\\ n_2\\ n_3\\ \end{bmatrix} \ \ \text{ with transpose }\ \ \mathbf{n}^{\rm{T}} = \begin{bmatrix} \ \ n_1\ \ n_2\ \ n_3\ \\ \end{bmatrix} \tag{B-26} \end{equation} By equation (B-23) the detailed expression of \; \Bbb{L} \; is \begin{equation} \Bbb{L}(\mathbf{v})= \begin{bmatrix} &1+(\gamma-1)n_1^{2}&(\gamma-1)n_1n_2&(\gamma-1)n_1n_3&-\;\dfrac{\gamma \upsilon}{c}n_1&\\ &&&&&\\ &(\gamma-1)n_2n_1&1+(\gamma-1)n_2^{2}&(\gamma-1)n_2n_3&-\;\dfrac{\gamma \upsilon}{c}n_2&\\ &&&&&\\ &(\gamma-1)n_3n_1&(\gamma-1)n_3n_2&1+(\gamma-1)n_3^{2}&-\;\dfrac{\gamma \upsilon}{c}n_3&\\ &&&&&\\ &-\;\dfrac{\gamma \upsilon}{c}n_1&-\;\dfrac{\gamma \upsilon}{c}n_2&-\;\dfrac{\gamma \upsilon}{c}n_3&\gamma& \end{bmatrix} \tag{B-27} \end{equation} and in block form \begin{equation} \Bbb{L}(\mathbf{v})= \begin{bmatrix} &I+(\gamma-1)\mathbf{n}\mathbf{n}^{\rm{T}} &\hspace{5mm} -\;\dfrac{\gamma \mathbf{v}}{c}&\\ &&&\\ &-\;\dfrac{\gamma \mathbf{v}^{T}}{c}&\hspace{5mm}\gamma&\\ \end{bmatrix} \tag{B-28} \end{equation} where it's clear that this transformation is a function of the velocity vector \;\mathbf{v}\; only, that is of the three real scalar parameters \upsilon_1,\upsilon_2,\upsilon_3.
Note that under this more general Lorentz Transformation the transformations of the position vector \:\mathbf{x}\: and time \:t\: are
\begin{equation} \mathbf{x}^{\boldsymbol{\prime}} = \mathbf{x}+(\gamma-1)(\mathbf{n}\circ \mathbf{x})\mathbf{n}-\gamma \mathbf{v}t \tag{B-29a} \end{equation} \begin{equation} t^{\boldsymbol{\prime}} = \gamma\left(t-\dfrac{\mathbf{v}\circ \mathbf{x}}{c^{2}}\right) \tag{B-29b} \end{equation} where "\circ" the usual inner product in \:\mathbb{R}^{3}\:.
In differential form \begin{equation} d\mathbf{x}^{\boldsymbol{\prime}} = d\mathbf{x}+(\gamma-1)(\mathbf{n}\circ d\mathbf{x})\mathbf{n}-\gamma \mathbf{v}dt \tag{B-30a} \end{equation} \begin{equation} dt^{\boldsymbol{\prime}} = \gamma\left(dt-\dfrac{\mathbf{v}\circ d\mathbf{x}}{c^{2}}\right) \tag{B-30b} \end{equation}
So, if a particle is moving with velocity \:\mathbf{u}=\dfrac{d\mathbf{x}}{dt}\: in system \:Ox_1x_2x_3\: then its velocity \:\mathbf{u}^{\boldsymbol{\prime}}=\dfrac{d\mathbf{x}^{\boldsymbol{\prime}}}{dt^{\boldsymbol{\prime}}}\: with respect to \:Ox_1^{\boldsymbol{\prime}}x_2^{\boldsymbol{\prime}}x_3^{\boldsymbol{\prime}}\: is found from the division of (B-30a) and (B-30b) side by side
\begin{equation} \mathbf{u}^{'} = \dfrac{\mathbf{u}+(\gamma-1)(\mathbf{n}\circ \mathbf{u})\mathbf{n}-\gamma \mathbf{v}}{\gamma \Biggl(1-\dfrac{\mathbf{v}\circ \mathbf{u}}{c^{2}}\Biggr)} \tag{B-31} \end{equation}
Equation (B-31) is a generalization of the addition of velocities in Special Relativity not restricted to collinear velocities. Here (B-31) is the result of the addition of velocities \:-\mathbf{v}\: and \:\mathbf{u}\:.
No comments:
Post a Comment