Thursday 13 October 2016

quantum mechanics - Is it a typo in David Tong's derivation of spin-orbit interaction?


A few lines below equation 7.8 D. Tong writes



The final fact is the Lorentz transformation of the electric field: as electron moving with velocity $\vec{v}$ in an electric field E will experience a magnetic field $\vec{B}=\frac{\gamma}{c^2}(\vec{v}\times\vec{E})$.



The note says that it was derived in another note but I couldn't find this expression.



Is this coefficient $\gamma/c^{2}$ correct? Griffiths derives this to be $-1/c^2$ and I did not find anything wrong there. See Griffiths electrodynamics, third edition, equation 12.109.


Then I looked at this book which uses Griffiths' expression in Sec. 20.5, but uses $\vec{p}=m\vec{v}$ instead to $\vec{p}=\gamma m \vec{v}$ to derive the same result. Which one is correct and why?



Answer



enter image description here


In above Figure-01 an inertial system $\:\mathrm S'\:$ is translated with respect to the inertial system $\:\mathrm S\:$ with constant velocity
\begin{align} \boldsymbol{\upsilon} & \boldsymbol{=}\left(\upsilon_{1},\upsilon_{2},\upsilon_{3}\right) \tag{02a}\label{02a}\\ \upsilon & \boldsymbol{=}\Vert \boldsymbol{\upsilon} \Vert \boldsymbol{=} \sqrt{ \upsilon^2_{1}\boldsymbol{+}\upsilon^2_{2}\boldsymbol{+}\upsilon^2_{3}}\:\in \left(0,c\right) \tag{02b}\label{02b} \end{align}


The Lorentz transformation is \begin{align} \mathbf{x}^{\boldsymbol{\prime}} & \boldsymbol{=} \mathbf{x}\boldsymbol{+} \dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}\right)\boldsymbol{\upsilon}\boldsymbol{-}\dfrac{\gamma\boldsymbol{\upsilon}}{c}c\,t \tag{03a}\label{03a}\\ c\,t^{\boldsymbol{\prime}} & \boldsymbol{=} \gamma\left(c\,t\boldsymbol{-} \dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}}{c}\right) \tag{03b}\label{03b}\\ \gamma & \boldsymbol{=} \left(1\boldsymbol{-}\dfrac{\upsilon^2}{c^2}\right)^{\boldsymbol{-}\frac12} \tag{03c}\label{03c} \end{align}


For the Lorentz transformation \eqref{03a}-\eqref{03b}, the vectors $\:\mathbf{E}\:$ and $\:\mathbf{B}\:$ of the electromagnetic field are transformed as follows \begin{align} \mathbf{E}' & \boldsymbol{=}\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\,\boldsymbol{+}\,\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right) \tag{04a}\label{04a}\\ \mathbf{B}' & \boldsymbol{=} \gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\boldsymbol{-}\!\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right) \tag{04b}\label{04b} \end{align} Now, if in system $\:\mathrm S\:$ we have $\:\mathbf{B}\boldsymbol{=0}$, then from \eqref{04a}-\eqref{04b} \begin{align} \mathbf{E}' & \boldsymbol{=}\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon} \tag{05a}\label{05a}\\ \mathbf{B}' & \boldsymbol{=} \boldsymbol{-}\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right) \tag{05b}\label{05b} \end{align} Equation \eqref{05b} corresponds to Tong's equation (it remains to explain the minus sign).


From equations \eqref{05a}-\eqref{05b} we have \begin{align} \mathbf{B}' & \boldsymbol{=} \boldsymbol{-}\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right) \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\gamma\mathbf{E}\right) \nonumber\\ & \boldsymbol{=} \boldsymbol{-}\dfrac{1}{c^2}\Biggl(\boldsymbol{\upsilon}\boldsymbol{\times}\left[\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\right]\Biggr) \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right) \nonumber \end{align} that is \begin{equation} \mathbf{B}' \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right) \tag{06}\label{06} \end{equation} Equation \eqref{06} corresponds to Griffiths' equation.


$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$



$\textbf{ADDENDUM}$


If in system $\:\mathrm S\:$ we have $\:\mathbf{E}\boldsymbol{=0}$, then from \eqref{04a}-\eqref{04b} \begin{align} \mathbf{E}' & \boldsymbol{=}\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right) \tag{07a}\label{07a}\\ \mathbf{B}' & \boldsymbol{=} \gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon} \tag{07b}\label{07b} \end{align} so that \begin{align} \mathbf{E}' & \boldsymbol{=} \gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right)\boldsymbol{=} \left(\boldsymbol{\upsilon}\boldsymbol{\times}\gamma\mathbf{B}\right) \nonumber\\ & \boldsymbol{=} \boldsymbol{\upsilon}\boldsymbol{\times}\left[\gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\right] \boldsymbol{=}\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}' \nonumber \end{align} that is \begin{equation} \mathbf{E}' \boldsymbol{=}\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}' \tag{08}\label{08} \end{equation} Equations \eqref{06} and \eqref{08} are the following equations \eqref{12.109} and \eqref{12.110} respectively \begin{equation} \boxed{\:\:\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{B}} \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\mathbf{v}\boldsymbol{\times}\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{E}}\right)\boldsymbol{.}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}} \tag{12.109}\label{12.109} \end{equation}


\begin{equation} \boxed{\:\:\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{E}} \boldsymbol{=}\mathbf{v}\boldsymbol{\times}\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{B}}\,\boldsymbol{.}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}} \tag{12.110}\label{12.110} \end{equation} as shown in ''Introduction to Electrodynamics'' by David J.Griffiths, 3rd Edition 1999.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...