Can a regularisation of the determinant be used to find the eigenvalues of the Hamiltonian in the normal infinite dimensional setting of QM?
Edit: I failed to make myself clear. In finite dimensions, there is a function of $\lambda$ whose roots are the eigenvalues (or inverses of the eigenvalues) of a given operator $U$, namely, the characteristic polynomial $\det (I-\lambda U)$. Is there some way of regularising this determinant to do the same thing in infinite dimensions? In general? Or at least for unitary operators which describe the time evolution of a quantum mechanical system?
link to a related question What does a unitary transformation mean in the context of an evolution equation?
EDIT: Perhaps the question still is not clear. The question was, and still is, ¿if you regularise $\det(I-\lambda U)$ as a complex valued function of $\lambda$, for $U$ a unitary operator, will its zeroes be the values of $\lambda$ such that $I-\lambda U$ fails to be invertible? ¿Has a non-zero kernel? ¿Or does regularising the determinant lose touch with that property of the finite dimensional determinant?
No comments:
Post a Comment