I currently studying the Lagrangian and Hamiltonian formalisms in classical mechanics, but something I'm not seeing is how do I know which one to use in a given problem? After I find the Lagrangian, should I just try the Euler equation and if that doesn't look nice try the Hamiltonian? Or are there some hallmarks of different problems that could indicate whether one would be easier than the other? And while we're at it, how do I know that I should use the Newtonian approach (other than if the problem involves friction)?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
I stand up and I look at two parallel railroad tracks. I find that converge away from me. Why? Can someone explain me why parallel lines s...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
No comments:
Post a Comment