I have read that the fine structure constant may well not be a constant. Now, if this were to be true, what would be the effect of a higher or lower value? (and why?)
Answer
Another thing that would be changed by a varying fine structure constant would be that it would alter almost every electromagnetically mediated phenomenon. All of the spectra of atoms would change. What would also change would be the temperature at which atoms can no longer hold onto their electrons, since the strength of attraction between electrons and the nucleus would change. This would then change the redshift at which the universe becomes transparent. The end result would be that the cosmic background radiation would be coming from a different time in the universe's history than otherwise thought. This would have consequences for the values of cosmological parameters.
Once you alter phenomena in this stage of the universe's history, though, you have to be quite careful to not disrupt the current predictions for how much hydrogen, helium, and heavy elements there are in the universe (while creating nuclei depends mainly on the strong interaction, electromagnetism does have something to do with determining the final energies of the nuclei, and so can't be completely neglected--changing the fine structure constant changes these cross-sections). Current theory predicts these things with great accuracy, and changing things around, particularly particle physics parameters that govern the length of the neucleosyntheis era (which overlaps with, but is a subset of the time at which the universe is opaque) potentially make these observations not agree with theory.
No comments:
Post a Comment