Suppose that Ω is a body of revolution of the function y=f(x),a≤x≤b around the x-axis, where f(x)>0 is continuous.
How to compute the inertia tensor JΩ?
After computing JΩ, how to solve JΩ˙w=JΩw×w?
Answer
I will answer the mass moment of inertia tension question. For an infinitesimal clump of mass dm located at →r its effect on the inertia tensor is dJ=−[→r×][→r×]dm
where [→r×] is the skew symmetric cross product operator (xyz)×=[0−zyz0−x−yx0]
For a axisymmetric part →r(x,y,θ)=(x,ycosθ,ysinθ) where x=a…b, y=0…f(x) and θ=0…2π.
The total mass is m=∭ where {\rm d}V = (y{\rm d}\theta)({\rm d}y)({\rm d}x) m = \int \limits_a^b \int \limits_0^{f(x)} \int \limits_0^{2\pi} \rho\,y{\rm d}\theta\,{\rm d}y\,{\rm d}x \rho = \frac{m}{\pi \int_a^b {f(x)}^2\,{\rm d}x}
The inertia tensor is {\bf J}=\rho \iiint -[\vec{r}\times][\vec{r}\times]\,{\rm d}V. You can do some math to find that the inner integral is
\int \limits_0^{2\pi} -[\vec{r}\times][\vec{r}\times]\,{\rm d}\theta = \begin{bmatrix} 2\pi y^2&0&0\\0&\pi(2 x^2+y^2)&0\\0&0&\pi(2 x^2+y^2)\end{bmatrix}
In the end, I get {\bf J} = \rho\, \begin{bmatrix} \frac{\pi}{2}\int_a^b{f(x)}^4\,{\rm d}x&0&0\\ 0&\frac{\pi}{4}\int_a^b\left({f(x)}^4+4 x^2 {f(x)}^2\right)\,{\rm d}x &0\\0&0&\frac{\pi}{4}\int_a^b\left({f(x)}^4+4 x^2 {f(x)}^2\right)\,{\rm d}x \end{bmatrix}
No comments:
Post a Comment