Wednesday, 1 February 2017

Relativity, What actually happens if the Lorentz transformation. Lorentz boost



If we look the relations of Lorentz Boost; $$t'=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} (t-\frac{vx}{c^2})$$ $$x'=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} (x-vt)$$ $$y'=y$$ $$z'=z$$


we can concentrate on 2D case, and as $$v=\frac{ax}{bt}$$ and $$v'=\frac{ax'}{bt'}$$ Here $a$ is some certain numeric amount of length, and $b$ some certain numeric amount of time, so that $0Geometrized".


then we can write; $$t'=\frac{1}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (t-\frac{(\frac{ax}{bt})x}{c^2})$$ $$x'=\frac{1}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (x-(\frac{ax}{bt})t)$$


And these Reduce a bit to; $$t'=\frac{1}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (t-\frac{\frac{ax^2}{bt}}{c^2})$$ $$x'=\frac{1}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (x-\frac{ax}{b})$$


Wo when these are combined to $v'$ then $$v'=\frac{\frac{a}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (x-\frac{ax}{b})}{\frac{b}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} (t-\frac{\frac{ax^2}{bt}}{c^2})}$$


Which can be written; $$v'=\frac{a(x-\frac{ax}{b})}{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}} \frac{\sqrt{1-\frac{(\frac{ax}{bt})^2}{c^2}}}{b(t-\frac{\frac{ax^2}{bt}}{c^2}) }$$


And this reduces quickly just to; $$v'=\frac{a(x-\frac{ax}{b})}{1} \frac{1}{b(t-\frac{\frac{ax^2}{bt}}{c^2}) }=\frac{a(x-\frac{ax}{b})}{b(t-\frac{ax^2}{btc^2})}$$


And $$v'=\frac{ax-\frac{a^2x}{b}}{bt-\frac{bax^2}{btc^2}}=\frac{ax-\frac{a^2x}{b}}{bt-\frac{ax^2}{tc^2}}$$



So, this would be the Lorentz -Transformation for velocity; $$v'=\frac{ax-\frac{a^2x}{b}}{bt-\frac{ax^2}{tc^2}}$$


Question; Are these kind of higher level Lorentz Transformation been properly analysed before? (Source)
1. Velocity
2. Acceleration
3. Jerk
4. Momentum




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...