Saturday, 22 April 2017

Can a black hole be explained by newtonian gravity?



In the simple explanation that a black hole appears when a big star collapses under missing internal pressure and huge gravity, I can't see any need to invoke relativity. Is this correct?



Answer



By a coincidence, the radius of a "Newtonian black hole" is the same as the radius of the Schwarzschild black hole in general relativity. We demand the escape velocity $v$ to be the speed of light $c$, so the potential energy $GMm/R = mc^2/2$, i.e. $$ R = \frac{2GM}{c^2} $$ The agreement, especially when it comes to the numerical factor of $2$, is a coincidence. But one must appreciate that these are totally different theories. In particular, there's nothing special about the speed $c$ in the Newtonian (nonrelativistic) gravity. To be specific, objects are always allowed to move faster than $c$ which means that they may always escape the would-be black hole. There are no real black holes (object from which nothing can escape) in Newton's gravity.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...