Wednesday, 16 August 2017

quantum mechanics - Increasing a potential causes increase in energy levels


Suppose a potential $V(x)$, and suppose a bound particle so the allowed energy levels are discrete. Suppose a second potential $\widetilde{V}(x)$ such that $\widetilde{V}(x) \geq V(x)$ for all $x$ (suppose the potentials are relevant only for some interval). Does this necessarily imply that the eigenvalues of the Hamiltonian with $\widetilde{V}(x)$ will be at least those of the Hamiltonian with $V(x)$? That is, if $E_n$ are the energy levels of the first Hamiltonian and $\widetilde{E}_n$ are the energy levels of the second Hamiltonian, is $E_n\leq \widetilde{E}_n$ for all $n$? How can one show this?



Answer



You can show this by using perturbation theory (only for suitable small changes in the potential).


When you assume, that $\tilde{V}(x) = V(x) + c$ with $c > 0$, then you can write your problem als perturbation: If the unperturbated hamiltonian $\hat{\mathrm H}$ has eigenstates $ | \Psi_n \rangle $ with discrete energies, then perturbation-theory states that changing the hamiltonian by a little term $\hat{\mathrm V}_\textrm{perturbation}$ will change the eigenvalues $E_n$ by: $$ \Delta E_n = \left\langle \Psi_n \left| \hat{\mathrm V}_\textrm{perturbation}\right| \Psi_n \right\rangle $$ This is valid if you neglect terms of higher Order.


There is one think to watch out regarding perturbation theory: If your energy eigenvalues are degenerated, then the perturbation term has to be diagonal in the subspace that is spanned by the degenerated states.


In our case, $ \hat{\mathrm V}_\textrm{perturbation}= c$ is just a multiplication, so: $$ \langle \Psi_m | c | \Psi_n\rangle = c \langle \Psi_m | \Psi_n\rangle = c ~\delta_{nm} $$ $\hat{\mathrm V}_\textrm{perturbation}$ is diagonal in any subspace, and we can make use of perturbation theory. You then calculate the energy-shift just by $$ \Delta E_n = \langle \Psi_n | c| \Psi_n \rangle = c \langle \Psi_n | \Psi_n \rangle = c >0 $$ So if you increase the potential by a constant, then the energy eigenvalues will just shift by that constant.


Edit: One can expand the proof for perturbations that vary with time: Let the change in the potential be $\delta V(x)$ (which now depends on $x$), then you can still calculate the energy-shift by using perturbation theory. In whatever subspace that is formed by degenerate states, you can find a Basis $|\tilde{\Psi}_n \rangle$ for which $\delta V(x)$ is an orthogonal Operator.


In this Basis you then calculate the energy-shift like described above: $$ \Delta E_n = \langle \tilde{\Psi}_n | \delta V( \hat{x})| \tilde{\Psi}_n = \int dx |\tilde{\Psi}(x)|^2 \delta V(x) > 0 $$ Since $\delta V(x) > 0$. Those are now energyshifts for eigenstates of your "old" hamiltonian. However, those eigenstates are not necessarrily the eigenstates that you started with.



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...