Monday 1 January 2018

research level - Large gauge transformations for higher p-form gauge fields


Question: What is the large gauge transformations for higher p-form gauge field on a spatial d-dimensional torus $T^d$ or a generic (compact) manifold $M$? for p=1,2,3, etc or any other integers. Is there a homotopy group to label distinct classes of large gauge transformations for p-form gauge field on $d$-dimensional torus $T^d$ or any $M$ manifold ? (shall we assume the theory is a topological field theory, or not necessary?) References are welcome.




Background: Large gauge transformation has been of certain interests. The Wiki introduces it as




Given a topological space M, a topological group G and a principal G-bundle over M, a global section of that principal bundle is a gauge fixing and the process of replacing one section by another is a gauge transformation. If a gauge transformation isn't homotopic to the identity, it is called a large gauge transformation. In theoretical physics, M often is a manifold and G is a Lie group.



1-form: The well-known example is a connection $A$ as Lie algebra value 1-form. We have the finite gauge transformation. $$ A \to g(A+d)g^{-1} $$ An example of a large gauge transformation of a Schwarz-type Chern-Simons theory, $\int A \wedge dA$, on 2-dimensional $T^2$ torus of the size $L_1 \times L_2$ with spatial coordinates $(x_1,x_2)$ can be $g=\exp[i 2\pi(\frac{n_1 x_1}{L_1}+\frac{n_2 x_2}{L_2})]$. This way, for the constant gauge profile $(a_1(t),a_2(t))$ (constant respect to the space, satisfying EOM $dA=0$), the large gauge transformation identifies: $$ (a_1,a_2)\to (a_1,a_2)+2\pi (\frac{n_1}{L_1},\frac{n_2 }{L_2}) $$


This seems the two $\mathbb{Z}^2$ integer indices $(n_1,n_2)$ remind me the homotopy group: $\pi_1(T^2)=\pi_1(S^1\times S^1)=\mathbb{Z}^2$.


2-form: If we consider a 2-form $B$ field for a Schwarz-type TQFT, do we have the identification by $\pi_2(M)$ on the $M$ as the based manifold? (Note that $\pi_2(T^d)=0$ - ps. from the math fact that $\pi_2(G)=0$ for any compact connected Lie group $G$.) Is this the correct homotopy group description? How does large gauge transformation work on $T^d$ or $M$?


3-form: is there a homotopy group description on large gauge transformation? How does its large gauge transform on $T^d$ or $M$?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...