Tuesday, 12 June 2018

electrostatics - Facing a paradox: Earnshaw's theorem in one dimension


Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$\frac{d^2V}{dx^2}=-\frac{\rho(x)}{\epsilon_0}=-\frac{q\delta(x-x_0)}{\epsilon_0}.$$ If $q>0$, $V^{\prime\prime}(x_0)<0$, and if $q<0$, $V^{\prime\prime}(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...