(→σ⋅→p)2=(→σ⋅→p)(→σ⋅→p)=→p⋅→p+i(→σ⋅[→p×→p])=p2 Where does this (→σ⋅[→p×→p]) come from? Cause isn't σ2=I? It will really be a great help if someone can point me in the right direction.
It does not explain anything from here.
Answer
In general : (σ⋅a)(σ⋅b)=(a⋅b)I+i[σ⋅(a×b)] since
(σ⋅a)(σ⋅b)=(a1σ1+a2σ2+a3σ3)(b1σ1+b2σ2+b3σ3)=a1b1σ21+a2b2σ22+a3b3σ23+(a2b3−a3b2)σ2σ3+(a3b1−a1b3)σ3σ1+(a1b2−a2b1)σ1σ2=(a1b1+a2b2+a3b3)I⏟σ21=σ22=σ23=I+i(|a2a3b2b3|σ1+|a3a1b3b1|σ2+|a1a2b1b2|σ3)⏟σ2σ3=iσ1=−σ3σ2,σ3σ1=iσ2=−σ1σ3,σ1σ2=iσ3=−σ2σ1=(a⋅b)I+i[σ⋅(a×b)]
Now, equation (01) has an interpretation in case that a,b are unit vectors. So let the identity (01) with unit vectors (σ⋅n2)(σ⋅n1)=(n1⋅n2)I−i[σ⋅(n1×n2)],where‖ If the angle between \:\mathbf{n}_{1},\mathbf{n}_{2}\: is \:\phi\: and \:\mathbf{n}\: the unit vector normal to the plane of \:\mathbf{n}_{1},\mathbf{n}_{2}\: \begin{align} \cos\phi & = \mathbf{n}_{1}\boldsymbol{\cdot}\mathbf{n}_{2} \tag{04a}\\ \mathbf{n} & = \dfrac{\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}}{\Vert\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}\Vert}= \dfrac{\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}}{\sin\phi} \tag{04b} \end{align} then the rhs of equation (03) is expressed as \begin{equation} \mathrm{Q}= \left(\mathbf{n}_{1}\boldsymbol{\cdot}\mathbf{n}_{2}\right)\mathrm{I}-i\left[\boldsymbol{\sigma}\boldsymbol{\cdot}\left(\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}\right)\right]=\cos\left(\dfrac{2\phi}{2}\right)-i\sin\left(\dfrac{2\phi}{2}\right)\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n}\right) \tag{05} \end{equation} that is a special unitary matrix \:\mathrm{Q} \in \mathrm{SU(2)}\: or a unit quaternion, representation of a rotation around the axis \:\mathbf{n}\: through an angle \:\theta=2\phi. Note that the matrix \:-\mathrm{Q} \in \mathrm{SU(2)}\: as expressed by \begin{equation} -\mathrm{Q}= \cos\left(\dfrac{2\pi+2\phi}{2}\right)-i\sin\left(\dfrac{2\pi+2\phi}{2}\right)\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n}\right) \tag{06} \end{equation} represents a rotation through \:\theta'=2\pi+2\phi, that is the same rotation as \:+\mathrm{Q}\: does.
Now, the special unitary matrix \begin{equation} \mathrm{R_\jmath}=-i\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n_\jmath}\right) =\cos\left(\dfrac{\pi}{2}\right)-i\sin\left(\dfrac{\pi}{2}\right)\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n_\jmath}\right) \tag{07} \end{equation} represents a rotation around the axis \:\mathbf{n_\jmath}\: through an angle \:\pi, that is a reflection through the axis \:\mathbf{n_\jmath}.
So equation (03) is written as
\begin{equation} \bigl[-i\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n}_{2}\right)\bigr]\bigl[-i\left(\boldsymbol{\sigma}\boldsymbol{\cdot}\mathbf{n}_{1}\right)\bigr]= -\biggl[\left(\mathbf{n}_{1}\boldsymbol{\cdot}\mathbf{n}_{2}\right)\mathrm{I}-i\left[\boldsymbol{\sigma}\boldsymbol{\cdot}\left(\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}\right)\right]\biggr] \tag{08} \end{equation} or \begin{equation} \mathrm{R_2}\mathrm{R_1}=-\mathrm{Q} \tag{09} \end{equation} meaning that a reflection through an axis \:\mathbf{n}_1\: followed by a reflection through a second axis \:\mathbf{n}_2\: is a rotation around \:\mathbf{n}_{1}\boldsymbol{\times}\mathbf{n}_{2}\: by an angle \:2\phi\: where \:\phi\: the angle between \:\mathbf{n}_{1},\mathbf{n}_{2} as shown in the Figure below.
No comments:
Post a Comment