Monday 15 October 2018

mathematical physics - Global conformal group in 2D Euclidean space


This is a rather naive question, but I was just wondering.


I know that the local conformal algebra of 2d Euclidean space is the direct sum \begin{equation} \cal{L}_0\oplus\overline{\cal{L}_0}, \end{equation} where $\cal{L}_0$ and $\overline{\cal{L}_0}$ are two independent Witt algebras. The respective conformal group is $Z\otimes\bar Z$, where $Z$ consists of all the holomorphic and $\bar Z$ of all the anti-holomorphic coordinate transformations.


The global conformal algebra is generated by the generators $\{L_{\pm 1}, L_0\}\cup\{\overline{L}_{\pm 1}, \overline{L}_0\}$ and is, thus, the direct sum \begin{equation} \text{sl}(2,\mathbb{R})\oplus\overline{\text{sl}(2,\mathbb{R})}. \end{equation} I have read that the global conformal group is the group $\text{SL}(2,\mathbb{C})/\mathbb{Z_2}$, however shouldn't it be the group \begin{equation} \text{SL}(2,\mathbb{R})/\mathbb{Z_2}\hspace{0.2cm}\times\hspace{0.2cm}\overline{\text{SL}(2,\mathbb{R})/\mathbb{Z_2}}\qquad ? \end{equation}



Answer



This is e.g. explained in Ref. 1:





  1. The conformal compactifications of the $1\!+\!1D$ Minkowski (M) plane and the $2\!+\!0D$ Euclidean (E) plane are$^1$ $$ \overline{\mathbb{R}^{1,1}}~\cong~\mathbb{S}^1\times \mathbb{S}^1 \tag{1M}$$ and $$ \overline{\mathbb{R}^{2,0}}~\cong~\mathbb{S}^2, \tag{1E}$$ respectively.




  2. The (global) conformal groups are $${\rm Conf}(1,1)~\cong~O(2,2;\mathbb{R})/\{\pm {\bf 1}_{4\times 4}\}\tag{2M}$$ and $$ {\rm Conf}(2,0)~\cong~O(3,1;\mathbb{R})/\{\pm {\bf 1}_{4\times 4}\}, \tag{2E}$$ with 4 and 2 connected components, respectively.




  3. The corresponding connected components connected to the identity are $${\rm Conf}_0(1,1)~\cong~SO^+(2,2;\mathbb{R})/\{\pm {\bf 1}_{4\times 4}\}~\cong~PSL(2,\mathbb{R})\times PSL(2,\mathbb{R}) \tag{3M}$$ and $$ {\rm Conf}_0(2,0)~\cong~SO^+(3,1;\mathbb{R})~\cong~PSL(2,\mathbb{C}), \tag{3E}$$ respectively. Here $PSL(2,\mathbb{F})\equiv SL(2,\mathbb{F})/\{\pm {\bf 1}_{2\times 2}\}$. See also this related Phys.SE post.




References:




  1. M. Schottenloher, Math Intro to CFT, Lecture Notes in Physics 759, 2008; Subsections 1.4.2-3, Sections 2.3-5, 5.1-2.


--


$^1$ In more detail the conformal compactification of the $1\!+\!1D$ Minkowski plane is $$ \begin{align}\overline{\mathbb{R}^{1,1}}&\qquad\cong\qquad(\mathbb{S}^1\times \mathbb{S}^1)/\mathbb{Z}_2 \cr &\qquad\cong\qquad\left\{(x^0,x^1)\in\mathbb{R}^2 \mid (x^0,x^1)~\sim~(x^0\!+\!2,x^1)~\sim~(x^0,x^1\!+\!2)~\sim~(x^0\!+\!1,x^1\!+\!1)\right\}\cr &~~\stackrel{x^{\pm}=\frac{1}{2}(x^0\pm x^1)}{\cong}~\left\{(x^+,x^-)\in\mathbb{R}^2 \mid (x^+,x^-)~\sim~(x^+\!+\!1,x^-)~\sim~(x^+,x^-\!+\!1)\right\}\cr &\qquad\cong\qquad\mathbb{S}^1\times \mathbb{S}^1 ,\end{align}\tag{4M}$$ with Minkowski metric $$\mathbb{g}~=~\mathrm{d}x^0\odot\mathrm{d}x^0-\mathrm{d}x^1\odot\mathrm{d}x^1~\stackrel{x^{\pm}=\frac{1}{2}(x^0\pm x^1)}{=}~4\mathrm{d}x^+\odot\mathrm{d}x^- .\tag{5M}$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...