Monday, 22 October 2018

quantum field theory - How do I construct the SU(2) representation of the Lorentz Group using SU(2)timesSU(2)simSO(3,1) ?


This question is based on problem II.3.1 in Anthony Zee's book Quantum Field Theory in a Nutshell



Show, by explicit calculation, that (1/2,1/2) is the Lorentz Vector.



I see that the generators of SU(2) are the Pauli Matrices and the generators of SO(3,1)is a matrix composed of two Pauli Matrices along the diagonal. Is it always the case that the Direct Product of two groups is formed from the generators like this?



I ask this because I'm trying to write a Lorentz boost as two simultaneous quatertion rotations [unit quaternions rotations are isomorphic to SU(2)] and tranform between the two methods. Is this possible?


In other words, How do I construct the SU(2) representation of the Lorentz Group using the fact that SU(2)×SU(2)SO(3,1)?


Here is some background information:


Zee has shown that the algebra of the Lorentz group is formed from two separate SU(2) algebras [SO(3,1) is isomorphic to SU(2)×SU(2)] because the Lorentz algebra satisfies:


[J+i,J+j]=ieijkJk+[Ji,Jj]=ieijkJk[J+i,Jj]=0


The representations of SU(2) are labeled by j=0,12,1, so the SU(2)×SU(2) rep is labelled by (j+,j) with the (1/2,1/2) being the Lorentz 4-vector because and each representation contains (2j+1) elements so (1/2,1/2) contains 4 elements.



Answer



Here is a mathematical derivation. We use the sign convention (+,,,) for the Minkowski metric ημν.


I) First recall the fact that




SL(2,C) is (the double cover of) the restricted Lorentz group SO+(1,3;R).



This follows partly because:




  1. There is a bijective isometry from the Minkowski space (R1,3,||||2) to the space of 2×2 Hermitian matrices (u(2),det()), R1,3  u(2) := {σMat2×2(C)σ=σ} = spanR{σμμ=0,1,2,3},

    R1,3  ˜x = (x0,x1,x2,x3)σ = xμσμ  u(2),
    ||˜x||2 = xμημνxν = det(σ),σ0 := 12×2.




  2. There is a group action ρ:SL(2,C)×u(2)u(2) given by gρ(g)σ := gσg,gSL(2,C),σu(2),

    which is length preserving, i.e. g is a pseudo-orthogonal (or Lorentz) transformation. In other words, there is a Lie group homomorphism
    ρ:SL(2,C)O(u(2),R)  O(1,3;R).





  3. Since ρ is a continuous map and SL(2,C) is a connected set, the image ρ(SL(2,C)) must again be a connected set. In fact, one may show so there is a surjective Lie group homomorphism1
    ρ:SL(2,C)SO+(u(2),R)  SO+(1,3;R),

    ρ(±12×2) = 1u(2).




  4. The Lie group SL(2,C)=±esl(2,C) has Lie algebra sl(2,C) = {τMat2×2(C)tr(τ) = 0} = spanC{σii=1,2,3}.




  5. The Lie group homomorphism ρ:SL(2,C)O(u(2),R) induces a Lie algebra homomorphism ρ:sl(2,C)o(u(2),R)

    given by ρ(τ)σ = τσ+στ,τsl(2,C),σu(2),
    ρ(τ) = Lτ+Rτ,
    where we have defined left and right multiplication of 2×2 matrices Lσ(τ) := στ =: Rτ(σ),σ,τ  Mat2×2(C).





II) Note that the Lorentz Lie algebra so(1,3;R)sl(2,C) does not2 contain two perpendicular copies of, say, the real Lie algebra su(2) or sl(2,R). For comparison and completeness, let us mention that for other signatures in 4 dimensions, one has


SO(4;R)  [SU(2)×SU(2)]/Z2,(compact form)


SO+(2,2;R)  [SL(2,R)×SL(2,R)]/Z2.(split form)


The compact form (9) has a nice proof using quaternions


(R4,||||2)  (H,||2)andSU(2)  U(1,H),


see also this Math.SE post and this Phys.SE post. The split form (10) uses a bijective isometry


(R2,2,||||2)  (Mat2×2(R),det()).


To decompose Minkowski space into left- and right-handed Weyl spinor representations, one must go to the complexification, i.e. one must use the fact that




SL(2,C)×SL(2,C) is (the double cover of) the complexified proper Lorentz group SO(1,3;C).



Note that Refs. 1-2 do not discuss complexification2. One can more or less repeat the construction from section I with the real numbers R replaced by complex numbers C, however with some important caveats.




  1. There is a bijective isometry from the complexified Minkowski space (C1,3,||||2) to the space of 2×2 matrices (Mat2×2(C),det()), C1,3  Mat2×2(C) = spanC{σμμ=0,1,2,3},

    M(1,3;C)  ˜x = (x0,x1,x2,x3)σ = xμσμ  Mat2×2(C),
    ||˜x||2 = xμημνxν = det(σ).
    Note that forms are taken to be bilinear rather than sesquilinear.




  2. There is a surjective Lie group homomorphism3

    ρ:SL(2,C)×SL(2,C)SO(Mat2×2(C),C)  SO(1,3;C)

    given by (gL,gR)ρ(gL,gR)σ := gLσgR,
    gL,gRSL(2,C),σ  Mat2×2(C).




  3. The Lie group SL(2,C)×SL(2,C) has Lie algebra sl(2,C)sl(2,C).




  4. The Lie group homomorphism
    ρ:SL(2,C)×SL(2,C)SO(Mat2×2(C),C)

    induces a Lie algebra homomorphism ρ:sl(2,C)sl(2,C)so(Mat2×2(C),C)
    given by ρ(τLτR)σ = τLσ+στR,τL,τRsl(2,C),σMat2×2(C),
    ρ(τLτR) = LτL+RτR.





The left action (acting from left on a two-dimensional complex column vector) yields by definition the (left-handed Weyl) spinor representation (12,0), while the right action (acting from right on a two-dimensional complex row vector) yields by definition the right-handed Weyl/complex conjugate spinor representation (0,12). The above shows that



The complexified Minkowski space C1,3 is a (12,12) representation of the Lie group SL(2,C)×SL(2,C), whose action respects the Minkowski metric.



References:




  1. Anthony Zee, Quantum Field Theory in a Nutshell, 1st edition, 2003.





  2. Anthony Zee, Quantum Field Theory in a Nutshell, 2nd edition, 2010.






1 It is easy to check that it is not possible to describe discrete Lorentz transformations, such as, e.g. parity P, time-reversal T, or PT with a group element gGL(2,C) and formula (2).


2 For a laugh, check out the (in several ways) wrong second sentence on p.113 in Ref. 1: "The mathematically sophisticated say that the algebra SO(3,1) is isomorphic to SU(2)SU(2)." The corrected statement would e.g. be "The mathematically sophisticated say that the group SO(3,1;C) is locally isomorphic to SL(2,C)×SL(2,C)." Nevertheless, let me rush to add that Zee's book is overall a very nice book. In Ref. 2, the above sentence is removed, and a subsection called "More on SO(4), SO(3,1), and SO(2,2)" is added on page 531-532.


3 It is not possible to mimic an improper Lorentz transformations ΛO(1,3;C) [i.e. with negative determinant det(Λ)=1] with the help of two matrices gL,gRGL(2,C) in formula (15); such as, e.g., the spatial parity transformation P:  (x0,x1,x2,x3)  (x0,x1,x2,x3).

Similarly, the Weyl spinor representations are representations of (the double cover of) SO(1,3;C) but not of (the double cover of) O(1,3;C). E.g. the spatial parity transformation (19) intertwine between left-handed and right-handed Weyl spinor representations.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...