Wednesday 6 February 2019

homework and exercises - Pauli matrices identities


There are some definitions and properties for Pauli matrices and their combinations:


$$ \varepsilon^{\alpha \beta } = \varepsilon^{\dot {\alpha} \dot {\beta} } = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}_{\alpha \beta }, \quad \varepsilon_{\dot {\alpha} \dot {\beta}} = \varepsilon_{\alpha \beta} = -\varepsilon^{\alpha \beta }, $$ $$ (\sigma^{\mu})_{\alpha \dot {\alpha} } = (\hat {\mathbf E} , \hat {\mathbf \sigma})^{\mu}_{\alpha \dot {\alpha}}, \quad (\tilde {\sigma}^{\mu})^{\dot {\beta } \beta } = \varepsilon^{\alpha \beta}\varepsilon^{\dot {\alpha }\dot {\beta }}(\sigma^{\mu})_{\alpha \dot {\alpha}} = (\hat {\mathbf E}, -\hat {\mathbf \sigma})^{\mu , \dot {\beta }\beta }, $$ $$ (\sigma^{\mu \nu})_{\alpha \beta} = -\frac{1}{4}\left( (\sigma^{\mu} \tilde {\sigma}^{\nu})_{\alpha \beta } - (\sigma^{\nu} \tilde {\sigma}^{\mu})_{\alpha \beta }\right), \quad (\tilde {\sigma}^{\mu \nu})_{\dot {\alpha }\dot {\beta }} = -\frac{1}{4}\left( (\tilde{\sigma}^{\mu} \sigma^{\nu})_{\dot {\alpha} \dot {\beta} } - (\tilde {\sigma}^{\nu} \sigma^{\mu})_{\dot {\alpha} \dot {\beta} }\right), $$ $$ (\tilde {\sigma}^{\mu})^{\dot {\alpha }\alpha}(\sigma_{\mu})_{\beta \dot {\beta }} = 2\delta^{\dot {\alpha}}_{\dot {\beta}}\delta^{\alpha}_{\beta}. $$ How to show, that $$ (\sigma^{\alpha \beta})_{a b }(\tilde {\sigma}^{\mu \nu})_{\dot {c} \dot {d}}g_{\alpha \mu} = 0? $$ (It helps to show, that spinor irreducible representation of the generators of Lorentz group expands on two spinor subgroups).


My attempt.


I tried to show this, but only got following. $$ (\sigma^{\alpha \beta})_{a b }(\tilde {\sigma}^{\mu \nu})_{\dot {c} \dot {d}}g_{\alpha \mu} = \frac{1}{16}\left( (\sigma^{\alpha})_{a \dot {n}}(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\tilde {\sigma}^{\mu})_{\dot {c}}^{\quad m }(\sigma^{\nu })_{m \dot {d}} - (\sigma^{\alpha})_{a \dot {n}}(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\tilde {\sigma}^{\nu})_{\dot {c}}^{ \quad m}(\sigma^{\mu })_{m \dot {d}}\right) $$ $$ + \frac{1}{16}\left(-(\sigma^{\beta })_{a \dot {n}}(\tilde {\sigma}^{\alpha })^{ \dot {n}}_{\quad b}(\tilde {\sigma}^{\mu})_{\dot {c}}^{\quad m}(\sigma^{\nu })_{m \dot {d}} + (\sigma^{\beta })_{a \dot {n}}(\tilde {\sigma}^{\alpha })^{ \dot {n}}_{\quad b}(\tilde {\sigma}^{\nu})_{\dot {c}}^{\quad m }(\sigma^{\mu })_{m \dot {d}} \right)g_{\alpha \mu} $$ After that I transformed each summand like $$ (\sigma^{\alpha})_{a \dot {n}}(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\tilde {\sigma}^{\mu})_{\dot {c}}^{\quad m }(\sigma^{\nu })_{m \dot {d}}g_{\alpha \mu} = (\sigma^{\alpha})_{a \dot {n}}(\tilde {\sigma}_{\alpha})_{\dot {c}}^{\quad m }(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\sigma^{\nu })_{m \dot {d}} = $$ $$ = \varepsilon_{\dot {c}\dot {\gamma}}(\sigma^{\alpha})_{a \dot {n}}(\tilde {\sigma}_{\alpha})^{\dot {\gamma} m }(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\sigma^{\nu })_{m \dot {d}} = 2\varepsilon_{\dot {c}\dot {\gamma }}\delta^{\dot {\gamma}}_{\dot {m}}\delta^{n}_{a}(\tilde {\sigma}^{\beta })^{ \dot {n}}_{\quad b}(\sigma^{\nu })_{m \dot {d}} = $$ $$ 2\varepsilon_{\dot {c}\dot {m}}(\tilde {\sigma}^{\beta })^{ \dot {m}}_{\quad b}(\sigma^{\nu })_{a \dot {d}} = 2(\sigma^{\beta } )_{b \dot {c}}(\sigma^{\nu })_{a \dot {d}}. $$ Finally, I got $$ (\sigma^{\alpha \beta})_{a b }(\tilde {\sigma}^{\mu \nu})_{\dot {c} \dot {d}}g_{\alpha \mu} = \frac{1}{8}\left( (\sigma^{\beta})_{b\dot {c}}(\sigma^{\nu})_{a\dot {d}} + (\sigma^{\beta })_{b \dot {d}}(\sigma^{\nu})_{a \dot {c}} + (\sigma^{\beta })_{a \dot {c}}(\sigma^{\nu})_{b \dot {d}} + (\sigma^{\beta})_{a \dot {d}}(\sigma^{\nu})_{b \dot {c}}\right). $$ What to do next?



Answer



Note, that, on the third line, the $\beta$ indice of $\sigma^{\mu\nu}$ and the $\dot \beta$ indice of $\tilde \sigma^{\mu\nu}$ must be raised for indice coherence. Same error for the following lines.


The formula you want to demonstrate is certainly false. Take $\beta = \nu = 0$, and noting that $\sigma^{\alpha0}= -\frac{1}{2}\sigma^\alpha,\tilde \sigma^{\mu0}= \frac{1}{2}\sigma^\mu $, if the formula was exact, it would imply (with $g_{11}=g_{22}=g_{33}$), and in short tensorial notation :


$-\frac{1}{4} \vec \sigma \otimes \vec \sigma = 0\tag{1}$



which is obviously false.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...