Saturday, 2 March 2019

Why is quantum entanglement considered to be an active link between particles?


From everything I've read about quantum mechanics and quantum entanglement phenomena, it's not obvious to me why quantum entanglement is considered to be an active link. That is, it's stated every time that measurement of one particle affects the other.


In my head, there is a less magic explanation: the entangling measurement affects both particles in a way which makes their states identical, though unknown. In this case measuring one particle will reveal information about state of the other, but without a magical instant modification of remote entangled particle.


Obviously, I'm not the only one who had this idea. What are the problems associated with this view, and why is the magic view preferred?



Answer



Entanglement is being presented as an "active link" only because most people - including authors of popular (and sometimes even unpopular, using the very words of Sidney Coleman) books and articles - don't understand quantum mechanics. And they don't understand quantum mechanics because they don't want to believe that it is fundamentally correct: they always want to imagine that there is some classical physics beneath all the observations. But there's none.



You are absolutely correct that there is nothing active about the connection between the entangled particles. Entanglement is just a correlation - one that can potentially affect all combinations of quantities (that are expressed as operators, so the room for the size and types of correlations is greater than in classical physics). In all cases in the real world, however, the correlation between the particles originated from their common origin - some proximity that existed in the past.


People often say that there is something "active" because they imagine that there exists a real process known as the "collapse of the wave function". The measurement of one particle in the pair "causes" the wave function to collapse, which "actively" influences the other particle, too. The first observer who measures the first particle manages to "collapse" the other particle, too.


This picture is, of course, flawed. The wave function is not a real wave. It is just a collection of numbers whose only ability is to predict the probability of a phenomenon that may happen at some point in the future. The wave function remembers all the correlations - because for every combination of measurements of the entangled particles, quantum mechanics predicts some probability. But all these probabilities exist a moment before the measurement, too. When things are measured, one of the outcomes is just realized. To simplify our reasoning, we may forget about the possibilities that will no longer happen because we already know what happened with the first particle. But this step, in which the original overall probabilities for the second particle were replaced by the conditional probabilities that take the known outcome involving the first particle into account, is just a change of our knowledge - not a remote influence of one particle on the other. No information may ever be answered faster than light using entangled particles. Quantum field theory makes it easy to prove that the information cannot spread over spacelike separations - faster than light. An important fact in this reasoning is that the results of the correlated measurements are still random - we can't force the other particle to be measured "up" or "down" (and transmit information in this way) because we don't have this control even over our own particle (not even in principle: there are no hidden variables, the outcome is genuinely random according to the QM-predicted probabilities).


I recommend late Sidney Coleman's excellent lecture Quantum Mechanics In Your Face who discussed this and other conceptual issues of quantum mechanics and the question why people keep on saying silly things about it:



http://motls.blogspot.com/2010/11/sidney-coleman-quantum-mechanics-in.html



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...