Sunday, 12 January 2020

homework and exercises - Electric field of uniformly moving charge ; misprint in Feynman textbook? (28.3)


I doubt about formula (28.3) from this Feynman's lecture.


$$\textbf{E} = - \frac{q}{4 \pi \epsilon_0 } \Big{[} \ \frac{e_{r'}}{r'^2}+ \frac{r'}{c} \frac{d}{dt} \Big( \frac{e_{r'}}{r'^2} \Big) + \frac{1}{c^2} \frac{d^2}{dt^2} e_{r'} \ \Big{]}.\tag{28.3} $$



Consider a charge moving along axis $OX$ with constant speed $v$. Let us consider field at a point on the $OX$. Then formula simplified as follows


$$\textbf{E} = - \frac{q}{4 \pi \epsilon_0 } \Big{[} \ \frac{1}{r'^2}+ \frac{r'}{c} \frac{d}{dt} \Big( \frac{1}{r'^2} \Big) \ \Big{]} e_{r'} = - \frac{q}{4 \pi \epsilon_0 r'^2} \Big{[} \ 1 \pm \frac{2v}{c} \ \Big{]} e_{r'}$$


The sign depends on position of two points on the line. But this is not the point...


This formula seems definitely wrong. The correct formula must have factor $1 \pm \frac{v}{c}$. On the other hand there is no such corrections in an errata.


Questions




  1. Is it my mistake (when I substitute) or mistake in textbook?





  2. If it is mistake in textbook, what is correct formula? Where can I find it?





Answer



Hint :


Your mistake is this \begin{equation} \dfrac{\mathrm dr'}{\mathrm dt}=\boldsymbol{\pm}\,\upsilon \tag{01-wrong} \end{equation}


The correct one is \begin{equation} \dfrac{\mathrm dr'}{\mathrm dt}= \begin{cases} \dfrac{\upsilon}{\dfrac{\upsilon}{c}-1} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \dfrac{\upsilon}{\dfrac{\upsilon}{c}+1} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{02-right} \end{equation} where $\:\upsilon(>0)\:$ the speed of the charge towards the positives of the $\:x-$axis (the velocity being $\:\boldsymbol{\upsilon}=\upsilon\, \mathbf{i}\:$ where $\:\mathbf{i}\:$ the unit vector on the $\:x-$axis).


Note that \begin{equation} \mathbf{e}_{r^{'}}= \begin{cases} -\mathbf{i} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \hphantom{-}\mathbf{i} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{03} \end{equation} and \begin{equation} 1-\dfrac{2\, \mathrm dr'}{c\,\mathrm dt}=\dfrac{c\pm\upsilon}{c\mp\upsilon}= \begin{cases} \dfrac{c+\upsilon}{c-\upsilon} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \dfrac{c-\upsilon}{c+\upsilon} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{04} \end{equation}


enter image description here


Video here : Electric field of a uniformly moving point charge



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...