I doubt about formula (28.3) from this Feynman's lecture.
E=−q4πϵ0[ er′r′2+r′cddt(er′r′2)+1c2d2dt2er′ ].
Consider a charge moving along axis OX with constant speed v. Let us consider field at a point on the OX. Then formula simplified as follows
E=−q4πϵ0[ 1r′2+r′cddt(1r′2) ]er′=−q4πϵ0r′2[ 1±2vc ]er′
The sign depends on position of two points on the line. But this is not the point...
This formula seems definitely wrong. The correct formula must have factor 1±vc. On the other hand there is no such corrections in an errata.
Questions
Is it my mistake (when I substitute) or mistake in textbook?
If it is mistake in textbook, what is correct formula? Where can I find it?
Answer
Hint :
Your mistake is this \begin{equation} \dfrac{\mathrm dr'}{\mathrm dt}=\boldsymbol{\pm}\,\upsilon \tag{01-wrong} \end{equation}
The correct one is \begin{equation} \dfrac{\mathrm dr'}{\mathrm dt}= \begin{cases} \dfrac{\upsilon}{\dfrac{\upsilon}{c}-1} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \dfrac{\upsilon}{\dfrac{\upsilon}{c}+1} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{02-right} \end{equation} where \:\upsilon(>0)\: the speed of the charge towards the positives of the \:x-axis (the velocity being \:\boldsymbol{\upsilon}=\upsilon\, \mathbf{i}\: where \:\mathbf{i}\: the unit vector on the \:x-axis).
Note that \begin{equation} \mathbf{e}_{r^{'}}= \begin{cases} -\mathbf{i} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \hphantom{-}\mathbf{i} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{03} \end{equation} and \begin{equation} 1-\dfrac{2\, \mathrm dr'}{c\,\mathrm dt}=\dfrac{c\pm\upsilon}{c\mp\upsilon}= \begin{cases} \dfrac{c+\upsilon}{c-\upsilon} & \text{for charge }q \text{ to the left of the field point } \mathrm P\\ \\ \dfrac{c-\upsilon}{c+\upsilon} & \text{for charge }q \text{ to the right of the field point } \mathrm P \end{cases} \tag{04} \end{equation}
Video here : Electric field of a uniformly moving point charge
No comments:
Post a Comment