Friday 10 January 2020

quantum mechanics - Total spin of two spin-$1/2$ particles


On my book I read:


$S_{z-tot}\chi_+(1)\chi_+(2)=[S_{1z}+S_{2z}]\chi_+(1)\chi_+(2)=[S_{1z}\chi_+(1)]\chi_+(2)+[S_2\chi_+(2)]\chi_+(1)=...$


Now, I have two questions:



  • What's $\chi_+(1)\chi_+(2)$ ? I know that $\chi_+=(1,0)$ but I really don't understand that writing (what is a product between vectors?!). Is it maybe just a way to indicate a vector in $C^4$? Or instead it is a matrix or other?

  • What's $S_{z-tot}$? Is it 2x2 matrix or a, 4x4 matrix or other?


I also don't understand why the book distinguishes $S_{1z}$ and $S_{2z}$, aren't them the same 2x2 matrix defined for the single electron?


Thanks for your attenction and please answer in a simple way (I'm a begginer in these subjects).




Answer



You must study about product states, product space of two (linear) spaces, product of linear transformations etc (product symbol $\;'\otimes\;'$) \begin{equation} \chi_+(1)\chi_+(2) \equiv \chi_+(1) \otimes\chi_+(2) \tag{01} \end{equation} \begin{equation} S_{z-tot}= S_{1z}+S_{2z}\equiv \left(S_{1z} \otimes I_2\right)+ \left(I_1 \otimes S_{2z}\right) \tag{02} \end{equation}


\begin{align} &S_{z-tot}\chi_+(1)\chi_+(2)=[S_{1z}+S_{2z}]\chi_+(1)\chi_+(2) \nonumber\\ &\equiv \left[\left(S_{1z} \otimes I_2\right)+ \left(I_1 \otimes S_{2z}\right)\right]\left[\chi_+(1) \otimes\chi_+(2)\right] \nonumber\\ &=\left(S_{1z} \otimes I_2\right)\left[\chi_+(1) \otimes\chi_+(2)\right]+\left(I_1 \otimes S_{2z}\right)\left[\chi_+(1) \otimes\chi_+(2)\right] \nonumber\\ &=\left[S_{1z}\chi_+(1)\right] \otimes\chi_+(2)+\chi_+(1) \otimes\left[S_{2z}\chi_+(2)\right] \tag{03} \end{align}




A representation : \begin{equation} \chi_+(1)= \begin{bmatrix} \xi_1\\ \xi_2 \end{bmatrix}\;,\; \chi_+(2)= \begin{bmatrix} \eta_1\\ \eta_2 \end{bmatrix} \quad \Longrightarrow \quad \chi_+(1) \otimes\chi_+(2) = \begin{bmatrix} \xi_1 \eta_1\\ \xi_1 \eta_2\\ \xi_2 \eta_1\\ \xi_2 \eta_2 \end{bmatrix} \tag{04} \end{equation} Now \begin{align} & S_{1z}= \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}\;,\; I_2= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \nonumber\\ &\quad \Rightarrow \quad S_{1z} \otimes I_2= \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix} \otimes \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11}\cdot\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} & a_{12}\cdot\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\\ &\\ a_{21}\cdot\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} & a_{22}\cdot\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \end{bmatrix} \nonumber\\ &\quad \Rightarrow \quad S_{1z} \otimes I_2= \begin{bmatrix} a_{11} & 0 & a_{12} & 0\\ 0 & a_{11} & 0 & a_{12} \\ a_{21} & 0 & a_{22} & 0\\ 0 & a_{21} & 0 & a_{22} \end{bmatrix} \tag{05} \end{align} and \begin{align} & I_1= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\;,\; S_{2z}= \begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix} \nonumber\\ &\quad \Rightarrow \quad I_1 \otimes S_{2z}= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 1\cdot \begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix}&0\cdot\begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix}\\ &\\ 0\cdot\begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix}& 1\cdot\begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix} \end{bmatrix} \nonumber\\ &\quad \Rightarrow \quad I_1 \otimes S_{2z}= \begin{bmatrix} b_{11} & b_{12} & 0 & 0\\ b_{21} & b_{22} & 0 & 0 \\ 0 & 0 & b_{11} & b_{12}\\ 0 & 0 & b_{21} & b_{22} \end{bmatrix} \tag{06} \end{align} From equations (05) and (06) \begin{equation} S_{z-tot}=\left(S_{1z} \otimes I_2\right)+ \left(I_1 \otimes S_{2z}\right)= \begin{bmatrix} \left(a_{11}+b_{11}\right) & b_{12} & a_{12} & 0\\ b_{21} & \left(a_{11}+b_{22}\right) & 0 & a_{12} \\ a_{21} & 0 & \left(a_{22}+b_{11}\right) & b_{12}\\ 0 & a_{21} & b_{21} & \left(a_{22}+b_{22}\right) \end{bmatrix} \tag{07} \end{equation} If for example \begin{equation} S_{1z}=\tfrac{1}{2} \begin{bmatrix} 1 & 0\\ 0 &\!\!\! -\!1 \end{bmatrix}\;,\; S_{2z}=\tfrac{1}{2} \begin{bmatrix} 1 & 0\\ 0 &\!\!\! -\!1 \end{bmatrix} \tag{08} \end{equation} then \begin{equation} S_{z-tot}=\left(S_{1z} \otimes I_2\right)+ \left(I_1 \otimes S_{2z}\right)= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &\!\!\! -\!1 \end{bmatrix} \tag{09} \end{equation} The matrix in (09) is already diagonal with eigenvalues 1,0,0,-1. Rearranging rows and columns we have
\begin{equation} S'_{z-tot}= \begin{bmatrix} \begin{array}{c|cccc} 0 & 0 & 0 & 0\\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \!\!\!\!-\!1 \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c|c} S_{z}^{(j=0)} & 0_{1\times 3}\\ \hline 0_{3\times1} & S_{z}^{(j=1)} \end{array} \end{bmatrix} \tag{10} \end{equation} because, as could be proved(1), the product 4-dimensional Hilbert space is the direct sum of two orthogonal spaces : the 1-dimensional space of the angular momentum $\;j=0\;$ and the 3-dimensional space of the angular momentum $\;j=1\;$ : \begin{equation} \boldsymbol{2}\boldsymbol{\otimes}\boldsymbol{2}=\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3} \tag{11} \end{equation} In general for two independent angular momenta $\;j_{\alpha}\;$ and $\;j_{\beta}\;$, living in the $\;\left(2j_{\alpha}+1\right)-$ dimensional and $\;\left(2j_{\beta}+1\right)-$ dimensional spaces $\;\mathsf{H}_{\boldsymbol{\alpha}}\;$ and $\;\mathsf{H}_{\boldsymbol{\beta}}\;$ respectively, their coupling is achieved by constructing the $\;\left(2j_{\alpha}+1\right)\cdot\left(2j_{\beta}+1\right)-$ dimensional product space $\;\mathsf{H}_{\boldsymbol{f}}\;$
\begin{equation} \mathsf{H}_{\boldsymbol{f}}\equiv \mathsf{H}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}\mathsf{H}_{\boldsymbol{\beta}} \tag{12} \end{equation} Then the product space $\:\mathsf{H}_{\boldsymbol{f}}\:$ is expressed as the direct sum of $\:n\:$ mutually orthogonal subspaces $\:\mathsf{H}_{\boldsymbol{\rho}}\: (\rho=1,2,\cdots,n-1,n) $ \begin{equation} \mathsf{H}_{\boldsymbol{f}}\equiv \mathsf{H}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}\mathsf{H}_{\boldsymbol{\beta}} = \mathsf{H}_{\boldsymbol{1}}\boldsymbol{\oplus}\mathsf{H}_{\boldsymbol{2}} \boldsymbol{\oplus} \cdots \boldsymbol{\oplus} \mathsf{H}_{\boldsymbol{n}}=\bigoplus_{{\boldsymbol{\rho}}={\boldsymbol{1}}}^{{\boldsymbol{\rho}}={\boldsymbol{n}}} \mathsf{H}_{\boldsymbol{\rho}} \tag{13} \end{equation} where the subspace $\:\mathsf{H}_{\boldsymbol{\rho}}\:$ corresponds to angular momentum $\;j_{\rho}\;$ and has dimension \begin{equation} \dim \left(\mathsf{H}_{\boldsymbol{\rho}}\right) =2\cdot j_{\rho}+1 \tag{14} \end{equation} with \begin{align} j_{\rho} & = \vert j_{\beta}-j_{\alpha} \vert +\rho - 1\: , \quad \rho=1,2,\cdots,n-1,n \tag{15a}\\ n & =2\cdot\min (j_{\alpha}, j_{\beta})+1 \tag{15b} \end{align} Equation (13) is expressed also in terms of the dimensions of spaces and subspaces as : \begin{equation} (2j_{\alpha}+1)\boldsymbol{\otimes} (2j_{\beta}+1)=\bigoplus_{\rho=1}^{\rho=n}(2j_{\rho}+1) \tag{16} \end{equation} Equation (11) is a special case of equation (16) : \begin{equation} j_{\alpha}=\tfrac{1}{2} \:,\:j_{\beta}=\tfrac{1}{2} \: \quad \Longrightarrow \quad \: j_{1}=0 \:,\: j_{2}=1 \tag{17} \end{equation}




(1) the square of total angular momentum $\mathbf{S}^2$ expressed in the basis of its common with $\:S_{z-tot}\:$ eigenvectors has the following diagonal form : \begin{equation} \mathbf{S'}^2= \begin{bmatrix} \begin{array}{c|cccc} 0 & 0 & 0 & 0\\ \hline 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2 \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c|c} \left(\mathbf{S'}^2\right)^{(j=0)} & 0_{1\times 3}\\ \hline 0_{3\times1} & \left(\mathbf{S'}^2\right)^{(j=1)} \end{array} \end{bmatrix} \tag{10'} \end{equation} since for \begin{equation} S_{1x}=\tfrac{1}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\;,\; S_{2x}=\tfrac{1}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \tag{18} \end{equation} \begin{equation} S_{1y}=\tfrac{1}{2} \begin{bmatrix} 0 &\!\!\! -\!i\\ i & 0 \end{bmatrix}\;,\; S_{2y}=\tfrac{1}{2} \begin{bmatrix} 0 &\!\!\! -\!i\\ i & 0 \end{bmatrix} \tag{19} \end{equation} we have \begin{equation} S_{x-tot}=\left(S_{1x} \otimes I_2\right)+ \left(I_1 \otimes S_{2x}\right) =\tfrac{1}{2} \begin{bmatrix} 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{bmatrix} \tag{20} \end{equation} \begin{equation} S_{y-tot}=\left(S_{1y} \otimes I_2\right)+ \left(I_1 \otimes S_{2y}\right)=\tfrac{1}{2} \begin{bmatrix} 0 & \!\!\! -\!i & \!\!\! -\!i & 0\\ i & 0 & 0 & \!\!\! -\!i \\ i & 0 & 0 & \!\!\! -\!i \\ 0 & i & i & 0 \end{bmatrix} \tag{21} \end{equation} and consequently \begin{align} S^{2}_{x-tot} & =\tfrac{1}{4} \begin{bmatrix} 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{bmatrix}^{2} =\tfrac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} \tag{22x}\\ S^{2}_{y-tot} & =\tfrac{1}{4} \begin{bmatrix} 0 & \!\!\! -\!i & \!\!\! -\!i & 0\\ i & 0 & 0 & \!\!\! -\!i \\ i & 0 & 0 & \!\!\! -\!i \\ 0 & i & i & 0 \end{bmatrix}^2 =\tfrac{1}{2} \begin{bmatrix} 1 & 0 & 0 & \!\!\! -\!1 \\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0\\ \!\!\! -\!1 & 0 & 0 & 1 \end{bmatrix} \tag{22y}\\ S^{2}_{z-tot} & =\quad \!\! \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &\!\!\!-\!1 \end{bmatrix}^{2} =\quad \!\! \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{22z} \end{align} From \begin{equation} \mathbf{S}^{2}_{tot}=S^{2}_{x-tot}+S^{2}_{y-tot}+S^{2}_{z-tot} \tag{23} \end{equation} we have finally \begin{equation} \mathbf{S}^{2}_{tot}= \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix} \tag{24} \end{equation} For its eigenvalues $\lambda$ \begin{equation} \det\left(\mathbf{S}^{2}_{tot}-\lambda I_{4}\right)= \begin{vmatrix} 2-\lambda & 0 & 0 & 0\\ 0 & 1-\lambda & 1 & 0 \\ 0 & 1 & 1-\lambda & 0\\ 0 & 0 & 0 & 2-\lambda \end{vmatrix} =-\lambda \left(2-\lambda \right)^{3} \tag{25} \end{equation} So the eigenvalues of $\;\mathbf{S}^{2}_{tot}\;$ are: the eigenvalue $\lambda_{1}=0=j_{1}\left(j_{1}+1\right)$ with multiplicity 1 and the eigenvalue $\lambda_{2}=2=j_{2}\left(j_{2}+1\right)$ with multiplicity 3.



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...