On my book I read:
Sz−totχ+(1)χ+(2)=[S1z+S2z]χ+(1)χ+(2)=[S1zχ+(1)]χ+(2)+[S2χ+(2)]χ+(1)=...
Now, I have two questions:
- What's χ+(1)χ+(2) ? I know that χ+=(1,0) but I really don't understand that writing (what is a product between vectors?!). Is it maybe just a way to indicate a vector in C4? Or instead it is a matrix or other?
- What's Sz−tot? Is it 2x2 matrix or a, 4x4 matrix or other?
I also don't understand why the book distinguishes S1z and S2z, aren't them the same 2x2 matrix defined for the single electron?
Thanks for your attenction and please answer in a simple way (I'm a begginer in these subjects).
Answer
You must study about product states, product space of two (linear) spaces, product of linear transformations etc (product symbol ′⊗′) χ+(1)χ+(2)≡χ+(1)⊗χ+(2) Sz−tot=S1z+S2z≡(S1z⊗I2)+(I1⊗S2z)
Sz−totχ+(1)χ+(2)=[S1z+S2z]χ+(1)χ+(2)≡[(S1z⊗I2)+(I1⊗S2z)][χ+(1)⊗χ+(2)]=(S1z⊗I2)[χ+(1)⊗χ+(2)]+(I1⊗S2z)[χ+(1)⊗χ+(2)]=[S1zχ+(1)]⊗χ+(2)+χ+(1)⊗[S2zχ+(2)]
A representation : χ+(1)=[ξ1ξ2],χ+(2)=[η1η2]⟹χ+(1)⊗χ+(2)=[ξ1η1ξ1η2ξ2η1ξ2η2] Now S1z=[a11a12a21a22],I2=[1001]⇒S1z⊗I2=[a11a12a21a22]⊗[1001]=[a11⋅[1001]a12⋅[1001]a21⋅[1001]a22⋅[1001]]⇒S1z⊗I2=[a110a1200a110a12a210a2200a210a22] and I1=[1001],S2z=[b11b12b21b22]⇒I1⊗S2z=[1001]⊗[b11b12b21b22]=[1⋅[b11b12b21b22]0⋅[b11b12b21b22]0⋅[b11b12b21b22]1⋅[b11b12b21b22]]⇒I1⊗S2z=[b11b1200b21b220000b11b1200b21b22] From equations (05) and (06) Sz−tot=(S1z⊗I2)+(I1⊗S2z)=[(a11+b11)b12a120b21(a11+b22)0a12a210(a22+b11)b120a21b21(a22+b22)] If for example S1z=12[100−1],S2z=12[100−1] then Sz−tot=(S1z⊗I2)+(I1⊗S2z)=[100000000000000−1] The matrix in (09) is already diagonal with eigenvalues 1,0,0,-1. Rearranging rows and columns we have
S′z−tot=[000001000000000−1]=[S(j=0)z01×303×1S(j=1)z] because, as could be proved(1), the product 4-dimensional Hilbert space is the direct sum of two orthogonal spaces : the 1-dimensional space of the angular momentum j=0 and the 3-dimensional space of the angular momentum j=1 : \begin{equation} \boldsymbol{2}\boldsymbol{\otimes}\boldsymbol{2}=\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3} \tag{11} \end{equation} In general for two independent angular momenta \;j_{\alpha}\; and \;j_{\beta}\;, living in the \;\left(2j_{\alpha}+1\right)- dimensional and \;\left(2j_{\beta}+1\right)- dimensional spaces \;\mathsf{H}_{\boldsymbol{\alpha}}\; and \;\mathsf{H}_{\boldsymbol{\beta}}\; respectively, their coupling is achieved by constructing the \;\left(2j_{\alpha}+1\right)\cdot\left(2j_{\beta}+1\right)- dimensional product space \;\mathsf{H}_{\boldsymbol{f}}\;
\begin{equation} \mathsf{H}_{\boldsymbol{f}}\equiv \mathsf{H}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}\mathsf{H}_{\boldsymbol{\beta}} \tag{12} \end{equation} Then the product space \:\mathsf{H}_{\boldsymbol{f}}\: is expressed as the direct sum of \:n\: mutually orthogonal subspaces \:\mathsf{H}_{\boldsymbol{\rho}}\: (\rho=1,2,\cdots,n-1,n) \begin{equation} \mathsf{H}_{\boldsymbol{f}}\equiv \mathsf{H}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}\mathsf{H}_{\boldsymbol{\beta}} = \mathsf{H}_{\boldsymbol{1}}\boldsymbol{\oplus}\mathsf{H}_{\boldsymbol{2}} \boldsymbol{\oplus} \cdots \boldsymbol{\oplus} \mathsf{H}_{\boldsymbol{n}}=\bigoplus_{{\boldsymbol{\rho}}={\boldsymbol{1}}}^{{\boldsymbol{\rho}}={\boldsymbol{n}}} \mathsf{H}_{\boldsymbol{\rho}} \tag{13} \end{equation} where the subspace \:\mathsf{H}_{\boldsymbol{\rho}}\: corresponds to angular momentum \;j_{\rho}\; and has dimension \begin{equation} \dim \left(\mathsf{H}_{\boldsymbol{\rho}}\right) =2\cdot j_{\rho}+1 \tag{14} \end{equation} with \begin{align} j_{\rho} & = \vert j_{\beta}-j_{\alpha} \vert +\rho - 1\: , \quad \rho=1,2,\cdots,n-1,n \tag{15a}\\ n & =2\cdot\min (j_{\alpha}, j_{\beta})+1 \tag{15b} \end{align} Equation (13) is expressed also in terms of the dimensions of spaces and subspaces as : \begin{equation} (2j_{\alpha}+1)\boldsymbol{\otimes} (2j_{\beta}+1)=\bigoplus_{\rho=1}^{\rho=n}(2j_{\rho}+1) \tag{16} \end{equation} Equation (11) is a special case of equation (16) : \begin{equation} j_{\alpha}=\tfrac{1}{2} \:,\:j_{\beta}=\tfrac{1}{2} \: \quad \Longrightarrow \quad \: j_{1}=0 \:,\: j_{2}=1 \tag{17} \end{equation}
(1) the square of total angular momentum \mathbf{S}^2 expressed in the basis of its common with \:S_{z-tot}\: eigenvectors has the following diagonal form : \begin{equation} \mathbf{S'}^2= \begin{bmatrix} \begin{array}{c|cccc} 0 & 0 & 0 & 0\\ \hline 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2 \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c|c} \left(\mathbf{S'}^2\right)^{(j=0)} & 0_{1\times 3}\\ \hline 0_{3\times1} & \left(\mathbf{S'}^2\right)^{(j=1)} \end{array} \end{bmatrix} \tag{10'} \end{equation} since for \begin{equation} S_{1x}=\tfrac{1}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\;,\; S_{2x}=\tfrac{1}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \tag{18} \end{equation} \begin{equation} S_{1y}=\tfrac{1}{2} \begin{bmatrix} 0 &\!\!\! -\!i\\ i & 0 \end{bmatrix}\;,\; S_{2y}=\tfrac{1}{2} \begin{bmatrix} 0 &\!\!\! -\!i\\ i & 0 \end{bmatrix} \tag{19} \end{equation} we have \begin{equation} S_{x-tot}=\left(S_{1x} \otimes I_2\right)+ \left(I_1 \otimes S_{2x}\right) =\tfrac{1}{2} \begin{bmatrix} 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{bmatrix} \tag{20} \end{equation} \begin{equation} S_{y-tot}=\left(S_{1y} \otimes I_2\right)+ \left(I_1 \otimes S_{2y}\right)=\tfrac{1}{2} \begin{bmatrix} 0 & \!\!\! -\!i & \!\!\! -\!i & 0\\ i & 0 & 0 & \!\!\! -\!i \\ i & 0 & 0 & \!\!\! -\!i \\ 0 & i & i & 0 \end{bmatrix} \tag{21} \end{equation} and consequently \begin{align} S^{2}_{x-tot} & =\tfrac{1}{4} \begin{bmatrix} 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{bmatrix}^{2} =\tfrac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} \tag{22x}\\ S^{2}_{y-tot} & =\tfrac{1}{4} \begin{bmatrix} 0 & \!\!\! -\!i & \!\!\! -\!i & 0\\ i & 0 & 0 & \!\!\! -\!i \\ i & 0 & 0 & \!\!\! -\!i \\ 0 & i & i & 0 \end{bmatrix}^2 =\tfrac{1}{2} \begin{bmatrix} 1 & 0 & 0 & \!\!\! -\!1 \\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0\\ \!\!\! -\!1 & 0 & 0 & 1 \end{bmatrix} \tag{22y}\\ S^{2}_{z-tot} & =\quad \!\! \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &\!\!\!-\!1 \end{bmatrix}^{2} =\quad \!\! \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{22z} \end{align} From \begin{equation} \mathbf{S}^{2}_{tot}=S^{2}_{x-tot}+S^{2}_{y-tot}+S^{2}_{z-tot} \tag{23} \end{equation} we have finally \begin{equation} \mathbf{S}^{2}_{tot}= \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix} \tag{24} \end{equation} For its eigenvalues \lambda \begin{equation} \det\left(\mathbf{S}^{2}_{tot}-\lambda I_{4}\right)= \begin{vmatrix} 2-\lambda & 0 & 0 & 0\\ 0 & 1-\lambda & 1 & 0 \\ 0 & 1 & 1-\lambda & 0\\ 0 & 0 & 0 & 2-\lambda \end{vmatrix} =-\lambda \left(2-\lambda \right)^{3} \tag{25} \end{equation} So the eigenvalues of \;\mathbf{S}^{2}_{tot}\; are: the eigenvalue \lambda_{1}=0=j_{1}\left(j_{1}+1\right) with multiplicity 1 and the eigenvalue \lambda_{2}=2=j_{2}\left(j_{2}+1\right) with multiplicity 3.
No comments:
Post a Comment