Friday 10 January 2020

special relativity - Appearance of an angle of inclination on a horizontal rod moving upwards after a Lorentz Transformation



If i have in one inertial reference frame called $S':(x',y',z',t')$ a rod with lenght $l$ in the plane $z'=0$ and parallel with the $x'$ axis, moving with a velocity $u$ in the direction of the $y'$ axis, so i think therefore that the extreme points of the rod can be given in $S'$ by $$P'_1:(x'_1 , y'_1 , z'_1 , t'_1) = (x'_1 , ut'_1 ,z'_1 , t'_1) $$ $$P'_2:(x'_2 , y'_2 , z'_2 , t'_2) =(x'_1 + l , ut'_1 , z'_1 , t'_1)$$


Given that there is a inertial reference frame $S:(x,y,z,t)$ ; in relation to which the reference frame $S'$ is moving with velocity $v$ in the $x$ direction, and such that in the time $t=0$ both reference frames coincided, and after that, the $z'$ axis continued parallel to the $z$ axis as did the $y'$ axis parallel to $y$ axis and the $x'$ axis continued in the same direction as the $x$ axis.


So to get the points $P'_1$ and $P'_2$ in the frame $S$ i tried to do the lorentz inverse transform in each point as it is shown bellow:


\begin{equation} P'_1 \Rightarrow P_{1} \begin{cases} x_1=\gamma (x'_1+vt'_1) \\ y_1 = y'_1 =ut'_1\\ z_1 = z'_1\\ t_1 = \gamma(t'_1+\frac{v}{c^2}x'_1) \end{cases} \end{equation}


\begin{equation} P'_2 \Rightarrow P_{2} \begin{cases} x_2=\gamma ((x'_1+l)+vt'_2) = \gamma ((x'_1+l)+vt'_1)\\ y_2 = y'_2 =ut'_2=ut'_1\\ z_2 = z'_2 = z'_1\\ t_2 = \gamma(t'_2+\frac{v}{c^2}(x'_1+l)) = \gamma(t'_1+\frac{v}{c^2}(x'_1+l)) \end{cases} \end{equation}


But then if $t'_2 = t'_1$ there would be no $y$ axis inclination as the problem sugests, what i am doing wrong ?



Answer




Hint : We have here 3 frames and 2 Lorentz Transformations. (1) Frame $\:\mathrm S\left(x,y,z\right)\:$ (2) frame $\:\mathrm S'\left(x',y',z'\right)\:$ moving with respect to $\:\mathrm S\left(x,y,z\right)\:$ with velocity $\:\mathbf{v}=\left(v,0,0\right)\:$ along the common $\:x-,x'-$axis (3) frame $\:\mathrm S''\left(x'',y'',z''\right)\:$, the rest frame of the rod, moving with respect to $\:\mathrm S'\left(x',y',z'\right)\:$ with velocity $\:\mathbf{u}=\left(0,u,0\right)\:$ along the common $\:y'-,y''-$axis.


I suggest to take a look in my answer therein : General matrix Lorentz transformation




EDIT


We have here two 2+1-Lorentz transformations. So the axes $\:z,z',z''\:$ are ignored.


enter image description here


From Figure 01 :


Lorentz Transformation from $\:\mathrm{S}\equiv \{xy\eta, \eta=ct\}\:$ to $\:\mathrm{S'}\equiv \{x'y'\eta', \eta'=ct'\}\:$ \begin{equation} \begin{bmatrix} x'\\ y'\\ \eta' \end{bmatrix} = \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & \boldsymbol{-}\sinh\zeta \\ 0 & 1 & 0 \\ \boldsymbol{-}\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \eta \end{bmatrix} \,, \quad \tanh\zeta=\dfrac{v}{c} \tag{01} \end{equation} or \begin{equation} \mathbf{X'}=\mathrm{L'}\mathbf{X}\,, \qquad \mathrm{L'}= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & \boldsymbol{-}\sinh\zeta \\ 0 & 1 & 0 \\ \boldsymbol{-}\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \tag{01"} \end{equation}


enter image description here


From Figure 02:



Lorentz Transformation from $\:\mathrm{S'}\equiv \{x'y'\eta', \eta'=ct'\}\:$ to $\:\mathrm{S''}\equiv \{x''y''\eta'', \eta''=ct''\}\:$ \begin{equation} \begin{bmatrix} x''\\ y''\\ \eta'' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & \boldsymbol{-}\sinh\xi \\ 0 & \boldsymbol{-}\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \begin{bmatrix} x'\\ y'\\ \eta' \end{bmatrix} \,, \quad \tanh\xi=\dfrac{u}{c} \tag{02} \end{equation} or \begin{equation} \mathbf{X''}=\mathrm{L''}\mathbf{X'}\,, \qquad \mathrm{L''}= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & \boldsymbol{-}\sinh\xi \\ 0 & \boldsymbol{-}\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \tag{02"} \end{equation} Note that because of the Standard Configurations the matrices $\:\mathrm{L'}, \mathrm{L''}\:$ are real symmetric.


From equations (01) and (02) we have \begin{equation} \mathbf{X''}=\mathrm{L''}\mathbf{X'}=\mathrm{L''}\mathrm{L'}\mathbf{X}\Longrightarrow \mathbf{X''}=\Lambda\mathbf{X} \tag{03} \end{equation} where $\:\Lambda\:$ the composition of the two Lorentz Transformations $\:\mathrm{L'}, \mathrm{L''}\:$ \begin{equation} \Lambda=\mathrm{L''}\mathrm{L'}= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & \boldsymbol{-}\sinh\xi \\ 0 & \boldsymbol{-}\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & \boldsymbol{-}\sinh\zeta \\ 0 & 1 & 0 \\ \boldsymbol{-}\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \tag{04} \end{equation} that is \begin{equation} \Lambda= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & \boldsymbol{-}\sinh\zeta \\ \hphantom{-}\sinh\zeta\sinh\xi &\hphantom{-}\cosh\xi & \boldsymbol{-}\cosh\zeta\sinh\xi \\ \boldsymbol{-}\sinh\zeta\cosh\xi & \boldsymbol{-}\sinh\xi & \hphantom{-}\cosh\zeta\cosh\xi \\ \end{bmatrix} \tag{04"} \end{equation}


In the following it's necessary to have the inverse transformation $\:\Lambda^{\boldsymbol{-}1}\:$ which could be determined from : \begin{equation} \Lambda^{\boldsymbol{-}1}=\mathrm{L\!'}^{\boldsymbol{-}1}\mathrm{L\!''}^{\boldsymbol{-}1} \tag{05} \end{equation} For the inverse transformations $\:\mathrm{L\!'}^{\boldsymbol{-}1},\mathrm{L\!''}^{\boldsymbol{-}1}\:$ we have respectively \begin{equation} \mathrm{L'}\left(\zeta\right)= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & \boldsymbol{-}\sinh\zeta \\ 0 & 1 & 0 \\ \boldsymbol{-}\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \Longrightarrow \mathrm{L\!'}^{\boldsymbol{-}1}=\mathrm{L'}\left(\boldsymbol{-}\zeta\right)= \begin{bmatrix} \cosh\zeta & 0 & \sinh\zeta \\ 0 & 1 & 0 \\ \sinh\zeta & 0 & \cosh\zeta \\ \end{bmatrix} \tag{06} \end{equation} \begin{equation} \mathrm{L''}\left(\xi\right)= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & \boldsymbol{-}\sinh\xi \\ 0 & \boldsymbol{-}\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \Longrightarrow \mathrm{L\!''}^{\boldsymbol{-}1}=\mathrm{L''}\left(\boldsymbol{-}\xi\right)= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\cosh\xi & \sinh\xi \\ 0 & \sinh\xi & \cosh\xi \\ \end{bmatrix} \tag{07} \end{equation} so \begin{equation} \!\!\!\!\!\! \Lambda^{\boldsymbol{-}1} \!=\! \begin{bmatrix} \cosh\zeta & 0 & \sinh\zeta \\ 0 & 1 & 0 \\ \sinh\zeta & 0 & \cosh\zeta \\ \end{bmatrix} \!\!\! \begin{bmatrix} 1 & 0 & 0 \\ 0 &\cosh\xi & \sinh\xi \\ 0 & \sinh\xi & \cosh\xi \\ \end{bmatrix} \!=\! \begin{bmatrix} \cosh\zeta & \sinh\zeta\sinh\xi & \sinh\zeta\cosh\xi \\ 0 &\hphantom{-}\cosh\xi & \sinh\xi \\ \sinh\zeta & \cosh\zeta\sinh\xi & \cosh\zeta\cosh\xi \\ \end{bmatrix}\!\!\!\! \tag{08} \end{equation}


We need also the velocity vector, let $\:\mathbf{w}$, of the translational motion of the frame $\:\mathrm S''\left(x'',y''\right)\:$ with respect to the frame $\:\mathrm S\left(x,y\right)$. This vector is the relativistic sum of two orthogonal velocity vectors $\:\mathbf{v}=\left(\upsilon\,,0\right),\mathbf{u}=\left(0\,,u\right)$(1)
\begin{equation} \mathbf{w}=\mathbf{v}+\dfrac{\mathbf{u}}{\gamma_{\upsilon}}=\left[\upsilon\,,\left(\!1\!-\!\frac{\upsilon^{2}}{c^{2}}\right)^{\!\!\frac12}\!\!u\right]\,,\quad \gamma_{\upsilon} = \left(\!1\!-\!\frac{\upsilon^{2}}{c^{2}}\right)^{\!\!\boldsymbol{-}\frac12}=\cosh\zeta \tag{09} \end{equation} not to be confused with the relativistic sum of two collinear velocity vectors pointing to the same direction \begin{equation} w \ne \dfrac{\upsilon\!+\!u}{1+\dfrac{\upsilon u}{c^{2}}} \tag{10} \end{equation} From (09) we have \begin{align} \dfrac{w_{x}}{c} & = \dfrac{\upsilon}{\:\:c\:\:}=\tanh\zeta \tag{11.1}\\ \dfrac{w_{y}}{c} & = \dfrac{u}{\gamma_{\upsilon}c}= \dfrac{\tanh\xi}{\cosh\zeta} \tag{11.2}\\ \left(\dfrac{w}{c}\right)^{2} & = \left(\dfrac{w_{x}}{c}\right)^{2}+\left(\dfrac{w_{y}}{c}\right)^{2}=1-\left(\dfrac{1}{\cosh\zeta\cosh\xi}\right)^{2}=\dfrac{\gamma^{2}_{w}\!-\!1}{\gamma^{2}_{w}} \tag{11.3}\\ \gamma_{w} & = \left(\!1\!-\!\frac{w^{2}}{c^{2}}\right)^{\boldsymbol{-}\frac12}=\cosh\zeta\cosh\xi=\gamma_{\upsilon}\gamma_{u} \tag{11.4} \end{align}


Now, let a rod of length $\:\boldsymbol{\ell}\:$ at rest in frame $\:\mathrm S''\:$ parallel to the $\:x''\!\!-$axis, see Figure 03. The end points of the rod are observed in $\:\mathrm S''\:$ simultaneously at a given time moment $\:t''\!\!-$ so we have two events $\:\mathrm 1''\:$ and $\:\mathrm 2''\:$ separated by the space-time vector \begin{equation} \Delta\mathbf{X''}= \begin{bmatrix} \Delta x''\\ \Delta y''\\ \Delta \eta'' \end{bmatrix} = \begin{bmatrix} x''_{2}-x''_{1}\\ y''_{2}-y''_{1}\\ c\left(t''_{2}-t''_{1}\right) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\ell}\\ 0\\ 0 \end{bmatrix} \tag{12} \end{equation}


enter image description here


In frame $\:\mathrm S\:$ the two events are observed as two events $\:\mathrm 1\:$ and $\:\mathrm 2\:$ separated by the space-time vector \begin{equation} \Delta\mathbf{X}= \begin{bmatrix} \Delta x\\ \Delta y\\ \Delta \eta \end{bmatrix} = \begin{bmatrix} x_{2}-x_{1}\\ y_{2}-y_{1}\\ c\left(t_{2}-t_{1}\right) \end{bmatrix} \tag{13} \end{equation} which is connected with $\:\Delta\mathbf{X''}\:$ by the $\:\Lambda^{\boldsymbol{-}1}\:$ transformation \begin{equation} \Delta\mathbf{X}=\Lambda^{\boldsymbol{-}1}\Delta\mathbf{X''} \tag{14} \end{equation} From equations (08) and (12) we have \begin{equation} \begin{bmatrix} \Delta x\\ \Delta y\\ \Delta \eta \end{bmatrix} = \begin{bmatrix} \cosh\zeta & \sinh\zeta\sinh\xi & \sinh\zeta\cosh\xi \\ 0 &\hphantom{-}\cosh\xi & \sinh\xi \\ \sinh\zeta & \cosh\zeta\sinh\xi & \cosh\zeta\cosh\xi \end{bmatrix} \begin{bmatrix} \boldsymbol{\ell}\\ 0\\ 0 \end{bmatrix} \tag{15} \end{equation} so \begin{equation} \Delta x=\boldsymbol{\ell} \cosh\zeta \,, \quad \Delta y=0\,, \quad \Delta \eta= c\Delta t=\boldsymbol{\ell}\sinh\zeta \tag{16} \end{equation}


enter image description here


Equation (16) is represented in Figure 04. But this view is not a snapshot of the rod at a given time moment $\:t\:$ in $\:\mathrm S\left(x,y\right)$. To the contrary, it's a montage of snapshots of the points along the rod, each point shown at its own time moment. So, the end $\:\mathrm 1\:$ of the rod is shown on its position at the time moment $\:t_{1}\:$, the end $\:\mathrm 2\:$ of the rod is shown on its position at the time moment $\:t_{2}\:$ and an intermediate point $\:\mathrm 3\:$ with coordinate $\:x_{3}\in \left[x_{1},x_{2}\right]\:$ at the time moment $\:t_{3}\:$ \begin{equation} t_{3}=t_{1}+\dfrac{x_{3}-x_{1}}{x_{2}-x_{1}}\left(t_{2}-t_{1}\right) \tag{17} \end{equation} To observe the rod at a given time moment $\:t\:$ in $\:\mathrm S\left(x,y\right)$, for example at $\:t_{1}\:$, we must return the end point $\:\mathrm 2\:$ from its position at time $\:t_{2}\:$ to its position at time $\:t_{1}\:$ since $\:\mathrm 1\:$ is already shown at time $\:t_{1}$.



enter image description here


This is done in Figure 05. Since the rod is in translational motion with velocity vector $\:\mathbf{w}\:$ in frame $\:\mathrm S\left(x,y\right)$, the two positions of $\:\mathrm 2\:$ at time moments $\:t_{1},t_{2}$ are separated by the vector $\:\mathbf{w}\left(t_{2}-t_{1}\right)$ and from equations (11.1),(11.2),(16) we have \begin{equation} \mathbf{w}\Delta t=\!\dfrac{\mathbf{w}}{c}\Delta \eta\!=\left(\dfrac{w_{x}}{c},\dfrac{w_{y}}{c}\right)\boldsymbol{\ell}\sinh\!\zeta= \left(\tanh\!\zeta,\dfrac{ \tanh\!\xi}{\cosh\!\zeta}\right)\boldsymbol{\ell}\sinh\!\zeta \tag{18} \end{equation} so \begin{equation} \mathbf{w}\Delta t= \left(\boldsymbol{\ell}\sinh\!\zeta\tanh\!\zeta,\boldsymbol{\ell}\tanh\!\zeta\tanh\!\xi\right) \tag{19} \end{equation} From details in Figure 05 about the lengths of line segments \begin{equation} \tan\!\theta=\dfrac{\boldsymbol{\ell}\!\tanh\!\zeta\!\tanh\!\xi}{\dfrac{\boldsymbol{\ell}}{\cosh\!\zeta}}=\sinh\!\zeta\tanh\!\xi \tag{20} \end{equation} but \begin{equation} \sinh\!\zeta=\underbrace{\cosh\!\zeta}_{\gamma_{\upsilon}}\underbrace{\tanh\!\zeta}_{\upsilon/c}=\dfrac{\gamma_{\upsilon}\upsilon}{c}\,, \quad \tanh\!\xi=\dfrac{u}{c} \tag{21} \end{equation} so \begin{equation} \boxed{\:\tan\!\theta=\dfrac{\gamma_{\upsilon}\upsilon u}{c^{2}}=\left(1-\dfrac{\upsilon^{2}}{c^{2}}\right)^{\boldsymbol{-}\frac12}\dfrac{\upsilon u}{c^{2}}\:} \tag{22} \end{equation} For the length $\:\boldsymbol{\ell}_{\mathrm S}\:$ of the inclined rod in frame $\: \mathrm S\:$ we have from the orthogonal triangle in Figure 05 \begin{equation} \boldsymbol{\ell}_{\mathrm S}^{2}=\left(\dfrac{\boldsymbol{\ell}}{\cosh\!\zeta}\right)^{\!\!2}+\left(\boldsymbol{\ell}\!\tanh\!\zeta\!\tanh\!\xi\vphantom{\dfrac12}\right)^{\!\!2}=\left[1 -\dfrac{\upsilon^{2}}{c^{2}}\left(1-\dfrac{u^{2}}{c^{2}}\right)\right]\boldsymbol{\ell}^{2} \tag{23} \end{equation} so \begin{equation} \boxed{\:\boldsymbol{\ell}_{\mathrm S}=\sqrt{1 -\dfrac{\upsilon^{2}}{c^{2}}\left(1-\dfrac{u^{2}}{c^{2}}\right)}\:\boldsymbol{\ell}\:} \tag{24} \end{equation}


From (22) and (24) we have verifications of the following two special cases :




  1. If $\:\color{blue}{u=0}\:$ then $\:\theta\!=\! 0\:$, the rod is moving parallel to the $\:x-$axis with speed $\:\upsilon\:$ , contracted from $\:\boldsymbol{\ell}\:$ to $\:\boldsymbol{\ell}/\cosh\!\zeta$.




  2. If $\:\color{blue}{\upsilon\!=\! 0}\:$ then $\:\theta\!=\! 0\:$, the rod is parallel to the $\:x-$axis with unchanged length $\:\boldsymbol{\ell}$ moving in the direction of the $\:y-$axis with speed $\:u$.







Numerical Examples : \begin{equation} \begin{Bmatrix} \upsilon/c=0.60\\ u/c=0.40 \end{Bmatrix} \quad =\!=\!=\!=\!\Longrightarrow\quad \begin{Bmatrix} \tan\!\theta=0.30 \\ \theta=16.70^{\,\rm o} \\ \boldsymbol{\ell}_{\mathrm S}=0.835\, \boldsymbol{\ell} \end{Bmatrix} \tag{25} \end{equation}


\begin{equation} \begin{Bmatrix} \upsilon/c=0.80\\ u/c=0.60 \end{Bmatrix} \quad =\!=\!=\!=\!\Longrightarrow\quad \begin{Bmatrix} \tan\!\theta=1.00 \\ \theta=45.00^{\,\rm o} \\ \boldsymbol{\ell}_{\mathrm S}=0.768\, \boldsymbol{\ell} \end{Bmatrix} \tag{26} \end{equation}


\begin{equation} \begin{Bmatrix} \upsilon/c\:\longrightarrow\:1\\ u/c\:\longrightarrow\:1 \end{Bmatrix} \quad =\!=\!=\!=\!\Longrightarrow\quad \begin{Bmatrix} \tan\!\theta\:\longrightarrow\:+\infty \\ \hphantom{\:\tan\theta}\theta\:\longrightarrow\:90.00^{\,\rm o} \\ \boldsymbol{\ell}_{\mathrm S}\:\longrightarrow\:\boldsymbol{\ell} \end{Bmatrix} \text{!!!!!!} \tag{27} \end{equation}




(1) We can derive equations (11.1),(11.2) for the components of the velocity vector $\:\mathbf{w}\:$ using the Lorentz transformation $\:\mathrm{L\!'}^{\boldsymbol{-}1}\:$ between frames $\:\mathrm S',\mathrm S\:$ instead of equation (09)(the last is given without proof and comes from on a general 3+1-Lorentz Transformation)


So, suppose that the origin $\:\mathrm O''\:$ of frame $\:\mathrm S''\:$ is a particle moving in frame $\:\mathrm S'\:$ with velocity vector
\begin{equation} \mathbf{u}=\left(\dfrac{\mathrm d x'}{\mathrm d t'},\dfrac{\mathrm d y'}{\mathrm d t'}\right)=\left(0,u\right) \tag{ft-01} \end{equation} From equation (06) for the Lorentz transformation $\:\mathrm{L\!'}^{\boldsymbol{-}1}\:$ \begin{equation} \begin{bmatrix} \mathrm d x\\ \mathrm d y\\ \mathrm d\eta \end{bmatrix} = \begin{bmatrix} \cosh\zeta & 0 & \sinh\zeta \\ 0 & 1 & 0 \\ \sinh\zeta & 0 & \cosh\zeta \\ \end{bmatrix} \begin{bmatrix} \mathrm d x'\\ \mathrm d y'\\ \mathrm d\eta' \end{bmatrix} \tag{ft-02} \end{equation} \begin{align} \mathrm dx & =\cosh\!\zeta \,\mathrm d x'+\sinh\!\zeta \,\mathrm d\eta' \tag{ft-03a}\\ \mathrm dy & =\mathrm dy' \tag{ft-03b}\\ \mathrm d\eta & = \sinh\!\zeta \,\mathrm dx'+\cosh\!\zeta \,\mathrm d\eta' \tag{ft-03c} \end{align} dividing (ft-03a) and (ft-03b) by (ft-03c) \begin{align} \dfrac{\mathrm dx}{\mathrm d\eta} & =\dfrac{\cosh\!\zeta \,\mathrm d x'+\sinh\!\zeta \,\mathrm d\eta'}{\sinh\!\zeta \,\mathrm dx'+\cosh\!\zeta \,\mathrm d\eta'}=\dfrac{\cosh\!\zeta \, \left(\dfrac{\mathrm dx'}{\mathrm d\eta'}\right)+\sinh\!\zeta}{\sinh\!\zeta \, \left(\dfrac{\mathrm dx'}{\mathrm d\eta'}\right)+\cosh\!\zeta} \tag{ft-04a}\\ \dfrac{\mathrm dy}{\mathrm d\eta} & =\dfrac{\mathrm dy'}{\sinh\!\zeta \,\mathrm dx'+\cosh\!\zeta \,\mathrm d\eta'}=\dfrac{\left(\dfrac{\mathrm dy'}{\mathrm d\eta'}\right)}{\sinh\!\zeta \, \left(\dfrac{\mathrm dx'}{\mathrm d\eta'}\right)+\cosh\!\zeta} \tag{ft-04b} \end{align} From (ft-01) having in mind that $\eta=ct,\eta'=ct'$ \begin{equation} \dfrac{\mathrm dx'}{\mathrm d\eta'}=0\,,\qquad \dfrac{\mathrm dy'}{\mathrm d\eta'}=\dfrac{u}{c}=\tanh\!\xi \tag{ft-05} \end{equation} Inserting expressions (ft-05) in (ft-04a,b) we have finally \begin{align} \dfrac{w_{x}}{c} & =\dfrac{\mathrm dx}{\mathrm d\eta} =\tanh\zeta=\dfrac{\upsilon}{\:\:c\:\:} \tag{11.1}\\ \dfrac{w_{y}}{c} & = \dfrac{\mathrm dy}{\mathrm d\eta}=\dfrac{\tanh\xi}{\cosh\zeta}=\dfrac{u}{\gamma_{\upsilon}c} \tag{11.2} \end{align}





------Figure 06 : The Length------ Figure 07 : The Angle------


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...