Friday, 20 March 2020

homework and exercises - Angular momentum of the electric field of a point-like electric charge and the magnetic field of a monopole


I am currently reading "Magnetic Monopoles" of Ya. Shnir. My problem is I can not retrieve a result the author provides in the first chapter of the first part. In this chapter, he studies the non-relativistic scattering of an electric charge on a magnetic one.


The author writes [p.5, near eq. (1.13)]:




... the appearance of an additional term in the definition of the angular momentum $(1.11)$ originates from a non-trivial field contribution. Indeed, since a static monopole is placed at the origin, its magnetic field is given by $(1.1)$. Then the classical angular momentum of the electric field of a point-like electric charge, whose position is defined by its radius vector $\mathbf{r}$, and the magnetic field of a monopole is a volume integral involving the Poynting vector


\begin{align} \tilde{\mathbf{L}}_{eg} &= \dfrac{1}{4\pi}\int \mathbf{r'} \times \left [ \mathbf{E} \times \mathbf{B}\right] d^3r'\tag{L.1}\\& = - \dfrac{g}{4\pi} \int d^3r' \left( \mathbf{\nabla}'\cdot \mathbf{E}\right) \hat{\bf r}' \tag{L.2}\\ &= -eg\hat{\bf r} \tag{L.3} \end{align}


where we perform the integration by parts, take into account that the fields vanish asymptotically and invoke the Maxwell equation


\begin{equation}\left(\mathbf{\nabla}' . \mathbf{E} \right) = 4 \pi e \delta^{(3)}\left( \mathbf{r} - \mathbf{r}'\right)\end{equation} ...



The magnetic field is


$\mathbf{B} = \dfrac{g}{r^3} \mathbf{r} \tag{1.1}$


The generalised angular momentum is


$\mathbf{L} = \mathbf{r} \times m\mathbf{v} - eg \hat{\bf r} \tag{1.11}$



The author gives how he got $(L.2)$ from $(L.1)$ but I do not know how to do? Have you any idea?



Answer



Answer expected by following author's hints. \begin{align} \mathbf{L}_{eg} &= \dfrac{1}{4\pi}\int \mathbf{r'} \times \left [\mathbf{E} \times \mathbf{B} \right] d^3r'\\ & = \dfrac{1}{4\pi} \int \left [ \left (\mathbf{B.r'} \right)\mathbf{E} - \left (\mathbf{E . r'} \right) \mathbf{B} \right] d^3r'\\ & = \dfrac{1}{4\pi} \int \left [ \left (\dfrac{g}{r'^3}\mathbf{r'.r'} \right)\mathbf{E} - \left (\mathbf{E . r'} \right)\dfrac{g}{r'^3} \mathbf{r'} \right] d^3r'\\ & = \dfrac{g}{4\pi} \int \dfrac{1}{r'} \left [\mathbf{E} - \left (\mathbf{E . \hat{r}'} \right) \mathbf{\hat{r}'} \right] d^3r' \\ & = \dfrac{g}{4\pi} \int \left[ \mathbf{E.\nabla'}\right]\mathbf{\hat{r}'} d^3r'. \end{align}


Or, let $\mathbf{U}$ and $\mathbf{v}$ be arbitrary vectors: \begin{equation} \left [ \mathbf{U.\nabla}\right]\mathbf{v} = \left[\mathbf{U.\nabla}v^i\right]\mathbf{e}_i, \end{equation} where $(\mathbf{e}_i)_{1\leq i \leq 3}$ denotes the cartesian basis.


By integrating by parts we have : \begin{align} \mathbf{L}_{eg} & = \dfrac{g}{4\pi} \int \left[ \mathbf{E.\nabla'}\right]\mathbf{\hat{r}'} d^3r'\\ & = \dfrac{g}{4\pi} \int \mathbf{E.\nabla'}(\hat{r}'^i) d^3r' \mathbf{e}_i \\ & = \dfrac{g}{4\pi} \int \left [\mathbf{\nabla' .} \left(\mathbf{E}\hat{r}'^i \right) \mathbf{e}_i - \left (\mathbf{\nabla' . E} \right)\mathbf{\hat{r}}'\right]d^3r'\\ & = \dfrac{g}{4\pi}\ \left[ \oint \mathbf{\hat{r}'} \left (\mathbf{E.da}\right) - \int \left ( \mathbf{\nabla' . E}\right) \mathbf{\hat{r}'} d^3r' \right]. \end{align} But the field $\mathbf{E}$ vanishes at infinty so it comes : \begin{equation} \mathbf{L}_{eg} = -\dfrac{g}{4\pi} \int \left ( \mathbf{\nabla' . E}\right) \mathbf{\hat{r}'} d^3r'. \end{equation} And finally, using the Maxwell equation :$\mathbf{\nabla'.E} = 4\pi e \delta^{(3)}(\mathbf{r} - \mathbf{r'})$, we get the result : \begin{equation} \mathbf{L}_{eg} = -eg\mathbf{\hat{r}}. \end{equation}


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...