Why do objects always 'tend' to move in straight lines? How come, everytime I see a curved path that an object takes, I can always say that the object tends to move in a straight line over 'small' distances, but as you take into account the curvature of the path, a force acting on the particle appears. I mean, I can always take a small enough portion of the curve, zoom in enough, and conclude that the object is moving in a straight line, but then as I zoom out I find out that a force is acting on the particle. The force of gravity is everywhere and, no matter how weak it is, it will make the particle take a path which is different from a straight line. This is my question: since particles are, in reality, never moving in straight lines, is Newton's first law a mathematical formalism or some true property of material objects?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
I stand up and I look at two parallel railroad tracks. I find that converge away from me. Why? Can someone explain me why parallel lines s...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
No comments:
Post a Comment