Monday, 30 March 2020

homework and exercises - Derivation of equations of motion in Nordstrom's theory of scalar gravity?


Nordstrom's theory of a particle moving in the presence of a scalar field $\varphi (x)$ is given by $$ S = -m\int e^{\varphi (x)}\sqrt{\eta_{\alpha \beta}\frac{dx^{\alpha}}{d \lambda}\frac{dx^{\beta}}{d \lambda}}d\lambda , $$ where $\lambda$ is the parametrization of the worldline of the particle, ignoring the free field part $\int \eta_{\alpha \beta}\partial^{\alpha}\varphi \partial^{\beta} \varphi d^{4}x$.


How does one derive the equations of motion in terms of the parameter $$d\tau = \sqrt{\eta_{\alpha \beta}\frac{dx^{\alpha}}{d \lambda}\frac{dx^{\beta}}{d \lambda}} d\lambda. $$ $u^{\alpha} = \frac{dx^{\alpha}}{d\tau} \Rightarrow u_{\alpha}u_{\beta}\eta^{\alpha \beta} = 1$?


My attempt:


$$ \delta S = 0 \Rightarrow \int \left( \frac{\partial (e^{\varphi } \sqrt{...})}{\partial x^{\alpha}}\delta x^{\alpha} +\frac{\partial (e^{\varphi } \sqrt{...})}{\partial \left( \frac{d x^{\alpha}}{d \lambda } \right)}\frac{d}{d\lambda} \delta x^{\alpha} \right)d\lambda = |d\tau = \sqrt{...}d\lambda | = $$ $$ = \int \left(\sqrt{...}e^{\varphi}\partial_{\alpha}\varphi - \frac{d}{d \lambda} \left(\frac{d x_{\alpha}}{d\tau}e^{\varphi}\right) \right)\delta x^{\alpha}d \lambda = $$ $$ =\int \left( \partial_{\alpha}\varphi - \frac{d^{2}x_{\alpha}}{d \tau^{2}} - \frac{dx_{\alpha}}{d\tau} \frac{d \varphi }{d\tau }\right) \delta x^{\alpha} e^{\varphi} \sqrt{...}d\lambda = $$ $$ =\int \left( \partial_{\alpha}\varphi - \frac{d u_{\alpha}}{d \tau} - u_{\alpha} u_{\beta} \partial^{\beta} \varphi \right)\delta x^{\alpha} e^{\varphi} \sqrt{...}d\lambda \Rightarrow $$ $$ \partial_{\alpha}\varphi - \frac{d u_{\alpha}}{d \tau} - u_{\alpha} u_{\beta} \partial^{\beta} \varphi = 0 \Rightarrow \partial_{\alpha} \varphi = e^{-\varphi}\frac{d }{d \tau}\left( e^{\varphi } u_{\alpha}\right). $$ Unfortunately, this equation doesn't look like the equation from Wikipedia, $$ \frac{d (\varphi u_{\alpha})}{d \tau} = -\partial_{\alpha } \varphi. $$ I can explain the part of differences by renaming the function, $e^{\varphi } \to \varphi $, in the expression for action (then my equation reduces to the form $ \partial_{\alpha} \varphi = \frac{d }{d \tau}\left( \varphi u_{\alpha}\right)$), but I can't explain why my equation has the wrong sign.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...