My solution to the above question involves equating the potential energy to the to the kinetic energy at the point at which the wire tightens as: 12mv2=mgh However, I am having trouble finding the initial rotational velocity of the object, I initially thought that it was, if l is length: ω=2lv However, seeing a this is a full (past) exam question, I think the solution if not as straightforward. My second thought was that perhaps the radius of rotation is the distance from the connection point to the centroid of the shape and v the velocity component perpendicular to this.
But I am not sure that all of the velocity after falling is converted into rotational velocity at that instant, or if the point of connection accelerates to the right at the point as the string becomes taut.
Tuesday, 31 March 2020
homework and exercises - Rotational velocity of tethered shape after falling
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βr with $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
I'm sitting in a room next to some totally unopened cans of carbonated soft drinks (if it matters — the two affected cans are Coke Zero...
-
What exactly are the spikes, or peaks and valleys, caused by in pictures such as these Wikipedia states that "From the point of view of...
No comments:
Post a Comment