I have a hard time understanding whether or not a wing placed in a potential flow, assuming there is no viscosity and no friction with the wing, will produce a lift. I've seen several contradictory (to me) versions of what happens in this case, in particular:
- In Landau - Lifshitz, Vol 6, §11 it is shown that the force vector on any object in a potential flow is zero (i.e. there is neither lift nor drag). The mathematics behind this derivation are above my understanding, thus I can't really follow how this is shown and what assumptions are made along the way.
- The Wikipedia article on the d'Alambert's paradox states that a body in a potential flow does not experience drag. On the other hand the article does not say anything about lift forces and the German version explicitly states that it does not apply for lift forces.
- A common explanation for the lift produced by wings seems to be that its asymmetric shape causes a higher velocity of the flow above the wing and a lower below. Due to Bernoulli's equation that would result in a pressure-difference and thus a force. Honestly I don't quite get this explanation as I don't see where the different velocities are supposed to come from (without friction and thus without the circulation resulting from turbulences behind the wing).
So now I'm wondering, do or do not wings have lift in irrotational, inviscid, incompressible fluids.
No comments:
Post a Comment