Sunday, 5 July 2020

homework and exercises - Coupled Harmonic Oscillator (Forced Vibration)


I derived two equations for a 2DOF harmonic oscillator system, declared state variable equations, and placed them into matrix form: $Ax' + Bx = C$. I have a Matlab script to determine the constants ($K$'s, $m$'s, & $R$'s). I'll be seeing how the system responds from 40 - 1000 Hz.



How can I manipulate these matrices to find the solutions to $x'$: \begin{array}{c} \dot{x}_s , \dot{x}_m , \dot{v}_s , \dot{v}_m \end{array}



$$ \begin{split} m_s \ddot{x}_s + R_{s1}\dot{x}_s + R_{2s}\left( \dot{x}_s - \dot{x}_m\right) + K_{s1}x_s + K_{s2} \left( x_s - x_m \right) &=& P_0 \\ m_m \ddot{x}_m + R_{m}\dot{x}_m - R_{2s}\left( \dot{x}_s - \dot{x}_m\right) + K_{m}x_m - K_{s2} \left( x_s - x_m \right)&=&0 \\ \dot{x}_s - v_s&=& 0 \\ \dot{x}_m - v_m &=& 0 \end{split} $$


$$ \left[ \begin{array}{cccc} 1 &0 & 0 &0 \\ 0 &1 & 0 & 0 \\ 0 & 0 & m_s &0 \\ 0 &0 & 0 & m_m \\ \end{array} \right] \left[ \begin{array}{c} \dot{x}_s \\ \dot{x}_m \\ \dot{v}_s \\ \dot{v}_m \end{array} \right] + \left[ \begin{array}{cccc} 0 &0 & - 1& 0 \\ 0& 0 &0 & -1 \\ K_{s1} + K_{s2} & -K_{s2} & R_{s1} + R_{s2} & -R_{s2} \\ -K_{s2} & K_{m} + K_{s2} & - R_{s2} & R_m + R_{s2} \end{array} \right] \left[ \begin{array}{c} {x}_s \\ {x}_m \\ {v}_s \\ {v}_m \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ 1 \\0 \end{array} \right] e^{i\omega t} $$





No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...