I've wondered about this for ages. If we create a pair of flywheels that rotate in the opposite direction with the same angular momentum, but are co-located and have the same mass and inertial moment (one can imagine various ways to accomplish this, at least approximately) -- it is clear to me that there cannot be any precession forces, but, if we try to rotate the entire assembly around an axis perpendicular to the axis of flywheel rotation, will the force needed to produce this secondary rotation be the same as if the flywheels were stationary, or will it require a proportionally greater force to rotate in this way, as it does with a single flywheel?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Problem Statement: Imagine a spherical ball is dropped from a height h, into a liquid. What is the maximum average height of the displaced...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
No comments:
Post a Comment