Saturday 27 September 2014

differential geometry - Conformal transformation/ Weyl scaling are they two different things? Confused!


I see that the weyl transformation is $g_{ab} \to \Omega(x)g_{ab}$ under which Ricci scalar is not invariant. I am a bit puzzled when conformal transformation is defined as those coordinate transformations that effect the above metric transformation i.e $x \to x' \implies g_{\mu \nu}(x) \to g'_{\mu \nu}(x') = \Omega(x)g_{\mu \nu }(x)$. but any covariant action is clearly invariant under coordinate transformation? I see that what we mean by weyl transformation is just changing the metric by at a point by a scale factor $\Omega(x)$. So my question is why one needs to define these transformations via a coordinate transforms. Is it the case that these two transformations are different things. In flat space time I understand that conformal transformations contain lorentz transformations and lorentz invariant theory is not necessarily invariant under conformal transformations. But in a GR or in a covariant theory effecting weyl transformation via coordinate transformations is going to leave it invariant. Unless we restrict it to just rescaling the metric?


I am really confused pls help.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...