Saturday, 20 September 2014

homework and exercises - Ricci tensor for a 3-sphere without Math packets


Let's have the metric for a 3-sphere: $$ dl^{2} = R^{2}\left(d\psi ^{2} + sin^{2}(\psi )(d \theta ^{2} + sin^{2}(\theta ) d \varphi^{2})\right). $$ I tried to calculate Riemann or Ricci tensor's components, but I got problems with it.


In the beginning, I got an expressions for Christoffel's symbols: $$ \Gamma^{i}_{ii} = \frac{1}{2}g^{ii}\partial_{i}g_{ii} = 0, $$


$$ \Gamma^{i}_{ji} = \frac{1}{2}g^{ii}\partial_{j}g_{ii}, $$


$$ \Gamma^{k}_{ll} = -\frac{1}{2}g^{kk}\partial_{k}g_{ll}, $$



$$ \Gamma^{k}_{lj} = \Gamma^{k}_{lk}\delta^{k}_{j} + \Gamma^{k}_{jk}\delta^{k}_{l} + \Gamma^{k}_{jj}\delta^{j}_{l} = 0. $$


The Ricci curvature must be $$ R_{lj}=\frac{2}{R^{2}}g_{lj}. $$ But when I use definition of Ricci tensor,


$$ R_{lj}^{(3)} = \partial_{k}\Gamma^{k}_{lj} - \partial_{l}\Gamma^{\lambda}_{j \lambda} + \Gamma^{k}_{j l}\Gamma^{\sigma}_{k \sigma} - \Gamma^{k }_{l \sigma}\Gamma^{\sigma}_{jk}, $$ I can't associate an expression (if I didn't make the mistakes)


$$ R_{lj}^{(3)} = \partial_{j}\Gamma^{j}_{lj} + \partial_{l}\Gamma^{l}_{jl} + \partial_{k}\Gamma^{k}_{ll}\delta^{l}_{j} - \partial_{l}\Gamma^{k}_{jk} - \Gamma^{k}_{jk}\Gamma^{j}_{lj} + \Gamma^{k}_{lk}\Gamma^{l}_{jl} + \Gamma^{\sigma}_{k \sigma}\Gamma^{k}_{ll}\delta^{l}_{j} - \Gamma^{k}_{jk}\Gamma^{k}_{lk} - \Gamma^{l}_{jl}\Gamma^{j}_{lj} - \Gamma^{l}_{kl}\Gamma^{k}_{ll}\delta^{l}_{j} - \Gamma^{j}_{ll}\Gamma^{l}_{jj} - \Gamma^{k}_{ll}\Gamma^{l}_{kl} = $$


$$ = \partial_{j}\Gamma^{j}_{lj} + \partial_{l}\Gamma^{l}_{jl} + \partial_{k}\Gamma^{k}_{ll}\delta^{l}_{j} - \partial_{l}\Gamma^{k}_{jk} - \Gamma^{k}_{jk}\Gamma^{j}_{lj} + \Gamma^{k}_{lk}\Gamma^{l}_{jl} + \Gamma^{\sigma}_{k \sigma}\Gamma^{k}_{ll}\delta^{l}_{j} - \Gamma^{k}_{jk}\Gamma^{k}_{lk} - \Gamma^{l}_{jl}\Gamma^{j}_{lj} - 2\Gamma^{l}_{kl}\Gamma^{k}_{ll}\delta^{l}_{j} - \Gamma^{j}_{ll}\Gamma^{l}_{jj}, $$ where there is a summation only on $k, \sigma$, with an expression for the metric tensor.


Maybe, there are some hints, which can help?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...