Wednesday, 11 March 2015

electromagnetism - Electric charges on compact four-manifolds


Textbook wisdom in electromagnetism tells you that there is no total electric charge on a compact manifold. For example, consider space-time of the form $\mathbb{R} \times M_3$ where the first factor is time. One defines the total charge via $Q(M_3) = \int_{M_3} \star j$ where $d\star F = \star j$ is the electric current. If $M_3$ has no boundary (e.g. if it is compact) one can use Stokes' theorem to argue that $$ Q(M_3) = \int_{M_3} d\star F = \int_{\partial M_3} \star F = 0.$$



I wonder what happens for general four-manifolds $M_4$, especially in the case that the third Betti number is zero (otherwise one can simply integrate over a three-cycle). Is there a sensible way to define charge in the above sense? Can one argue that it has to vanish if $\partial M_4 = 0$?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...