Friday, 3 April 2015

Need verification for the entropy equation in statistical thermodynamics


The relationship between entropy $S$, the total number of particles $N$, the available energy levels $E_j$ and a yet to be defined parameter $\beta$ is: $$S(\beta)=k_B \cdot N \cdot \ln\bigg(\sum_{j=1}^n[e^{\beta E_j}]\bigg) - k_B\cdot \beta \sum_{j=1}^n\bigg[\frac{N}{\sum_{i=1}^n [e^{\beta E_i}]}\cdot e^{\beta E_j}\cdot E_j\bigg]$$ The partition function $Z$ and the total energy $U$ as functions of $\beta$ are: $$\sum_{j=1}^n[e^{\beta E_j}] = Z(\beta) \tag{1}$$ $$\sum_{j=1}^n\bigg[\frac{N}{\sum_{i=1}^n [e^{\beta E_i}]}\cdot e^{\beta E_j}\cdot E_j\bigg]=U(\beta) \tag{2}$$


I need to first derive $\frac{dS}{d\beta}$ and then substitute parameters within $\frac{dS}{d\beta}$ with $\frac{dZ}{d\beta}$ and $\frac{dU}{d\beta}$ if there are any. I came up with the following: $$\frac{dS}{d\beta}=k_B\cdot \beta \cdot \bigg(\frac{d\big(\ln(Z)\big)}{d\beta}\cdot U - \frac{dU}{d\beta}\bigg)$$ However, I am not sure if this derivation is correct and would really appreciate a verification on this.



Answer



$$S(\beta) = k_B \cdot N \cdot \ln(Z(\beta)) - k_B\cdot \beta \cdot U(\beta).$$ $$U(\beta) = \sum_{j=1}^n\bigg[\frac{N}{\sum_{i=1}^n [e^{\beta E_i}]}\cdot e^{\beta E_j}\cdot E_j\bigg] = \frac{N}{\sum_{i=1}^n [e^{\beta E_i}]}\,\sum_{j=0}^{n} e^{\beta\,E_j}\cdot E_j = \frac{N}{Z(\beta)} \sum_{j=0}^{n} e^{\beta\,E_j}\cdot E_j$$ $$\frac{dZ}{d\beta} = \sum_{j=0}^{n} e^{\beta\,E_j}\cdot E_j = \frac{U(\beta)\cdot Z(\beta)}{N}$$ $$\frac{dS}{d\beta}=k_B\cdot \left( N\cdot\frac{d\left(\ln(Z)\right)}{d\beta} - U - \beta \cdot \frac{dU}{d\beta}\right)$$ $$\frac{dS}{d\beta}=k_B\cdot \left( \frac{N}{Z}\cdot\frac{dZ}{d\beta}-U-\beta\cdot\frac{dU}{d\beta} \right)$$ $$\frac{dS}{d\beta}= k_B\cdot \left( \frac{N}{Z}\cdot\frac{U\cdot Z}{N}-U-\beta\cdot\frac{dU}{d\beta} \right) = -\beta\cdot k_B\cdot \frac{dU}{d\beta}$$


Your first term vanished somewhere in my solution. I cannot tell where either of us did a mistake without comparing solutions.




Part II


Counting in degeneracy: $$S=k_B\bigg(N \cdot \ln(Z(\beta)) - \beta U(\beta) + \ln(\frac{N}{Z(\beta)}) \cdot N - \frac{N^2}{Z(\beta)}\bigg)$$ which has the last two terms in addition to the non-degenerate solution. So let's just solve for these two (using the fact that $\ln(a/b)=\ln(a)-\ln(b)$): $$\frac{d}{d\beta}\left( k_B\cdot\left[ N \cdot \ln(\frac{N}{Z(\beta)}) - \frac{N^2}{Z(\beta)} \right] \right) = k_B\cdot\left( - N \cdot\frac{1}{Z}\frac{dZ}{d\beta} + \frac{N^2}{Z^2}\cdot\frac{dZ}{d\beta} \right)$$ $$ = k_B \cdot\frac{dZ}{d\beta}\cdot\frac{N}{Z}\cdot\left( \frac{N}{Z} - 1 \right) = k_B \cdot\frac{U\cdot Z}{N}\cdot\frac{N}{Z}\cdot\left( \frac{N}{Z} - 1 \right) $$ $$ = k_B \cdot U(\beta) \cdot\left( \frac{N}{Z(\beta)} - 1 \right) $$



Therefore, overall derivative considering degeneracy is: $$\frac{dS}{d\beta} = k_B\cdot\left( - \beta\cdot\frac{dU}{d\beta} + \frac{U(\beta)\cdot N}{Z(\beta)} - U(\beta) \right)$$


So, no, unless you have a partition function of constant value $N$, factoring in degeneracy changes the outcome.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...