Let there be an equation, let's say $V=IR$. Now when we write its error formula we write it as $$\frac{\Delta V}{V} = \frac{\Delta I}{I} + \frac{\Delta R}{R}.$$ Now let us take example values. For instance let $V=12$, $I=3$, $R=4$, and $\Delta I=3\%$ and $\Delta R=2\%$. Hence the error in $V$ is $\Delta V=18\%$.
Now we can write Ohm's law as $I=\frac{V}{R}$. Now we get the error in $I$ to be $$\frac{\Delta I}{I} = \frac{\Delta V}{V} + \frac{\Delta R}{R}.$$ Keeping the same values of $\Delta V=18\%$ and $\Delta R=2\%$, we get $\Delta I=6\%$. Why is this different? According to the formulas for $\Delta V$ and $\Delta I$, in both cases we will surely get the different values, but why is it that we get different error values for the same pair of values of R,V and I?
No comments:
Post a Comment