Tuesday, 13 October 2015

homework and exercises - Passing from curl to vector product


I don't understand how to obtain second equation with first part in the equation $$ \nabla \times \vec A_0 e^{-j \vec k\cdot \vec r} = -j\vec k\times \vec A_0 e^{-j \vec k\cdot \vec r}. $$ Can you show me how to derive it?



Answer



\begin{equation} \boldsymbol{\nabla}\equiv \begin{bmatrix} \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix}\,, \quad \mathbf{A}= \begin{bmatrix} A_{1}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{2}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \end{bmatrix}\,, \quad \mathbf{k}\boldsymbol{\cdot}\mathbf{x}=k_{1}x_{1}+k_{2}x_{2}+k_{3}x_{3} \tag{01} \end{equation}


\begin{align} \boldsymbol{\nabla}\boldsymbol{\times}\left(\mathbf{A}\,e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}\right) & = \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{1}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{2}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1}e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}} & A_{2}e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}} & A_{3}e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}} \vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} = \begin{bmatrix} A_{3}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{2}}-A_{2}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{3}}-A_{3}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{2}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{1}}-A_{1}\dfrac{\partial e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} \nonumber\\ & =\boldsymbol{-}\mathrm{i}\:e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}} \begin{bmatrix} k_{2}A_{3}-k_{3}A_{2}\vphantom{\dfrac{\dfrac{}{}}{}}\\ k_{3}A_{1}-k_{1}A_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ k_{1}A_{2}-k_{2}A_{1}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} =\boldsymbol{-}\mathrm{i}\:e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}} \underbrace{ \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ k_{1} & k_{2} & k_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1} & A_{2} & A_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix}}_{\mathbf{k}\boldsymbol{\times}\mathbf{A}} \tag{02} \end{align} so \begin{equation} \boxed{\:\boldsymbol{\nabla}\boldsymbol{\times}\left(\mathbf{A}\,e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}\right) =\boldsymbol{-}\mathrm{i}\:e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}\left(\mathbf{k}\boldsymbol{\times}\mathbf{A}\right)\:\vphantom{\dfrac12^{\tfrac12}_{\tfrac12}}} \tag{03} \end{equation}




More generally :



If $\:\psi\left(x_{1},x_{2},x_{3}\right)\:$ and $\:\mathbf{A}\left(x_{1},x_{2},x_{3}\right)\:$ are scalar and vector functions respectively of the coordinates in $\:\mathbb{R}^{3}\:$ then \begin{equation} \boxed{\:\boldsymbol{\nabla}\boldsymbol{\times}\left(\psi\mathbf{A}\right)=\boldsymbol{\nabla}\psi\boldsymbol{\times}\mathbf{A}+\psi\boldsymbol{\nabla}\boldsymbol{\times}\mathbf{A}\:\vphantom{\dfrac12^{\tfrac12}_{\tfrac12}}} \tag{04} \end{equation} Equation (03) is a special case of (04) with \begin{equation} \psi\left(\mathbf{x}\right)\equiv e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}\,,\quad \mathbf{A}\left(\mathbf{x}\right)=\text{constant} \tag{05} \end{equation} and the fact that \begin{equation} \boldsymbol{\nabla}\psi=\boldsymbol{\nabla} e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}=\boldsymbol{-}\mathrm{i}\:e^{\boldsymbol{-}\mathrm{i}\:\mathbf{k}\boldsymbol{\cdot}\mathbf{x}}\mathbf{k} \tag{06} \end{equation}




Proof of identity (04): \begin{align} \boldsymbol{\nabla}\boldsymbol{\times}\left(\psi\mathbf{A}\right) & = \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{1}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{2}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \psi A_{1} & \psi A_{2} & \psi A_{3} \vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial \left(\psi A_{3}\right)}{\partial x_{2}}-\dfrac{\partial \left(\psi A_{2}\right)}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial \left(\psi A_{1}\right)}{\partial x_{3}}-\dfrac{\partial \left(\psi A_{3}\right)}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial \left(\psi A_{2}\right)}{\partial x_{1}}-\dfrac{\partial \left(\psi A_{1}\right)}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} = \begin{bmatrix} A_{3}\dfrac{\partial \psi}{\partial x_{2}}+ \psi\dfrac{\partial A_{3}}{\partial x_{2}}-A_{2}\dfrac{\partial \psi}{\partial x_{3}}-\psi\dfrac{\partial A_{2}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1}\dfrac{\partial \psi}{\partial x_{3}}+ \psi\dfrac{\partial A_{1}}{\partial x_{3}}-A_{3}\dfrac{\partial \psi}{\partial x_{1}}-\psi\dfrac{\partial A_{3}}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{2}\dfrac{\partial \psi}{\partial x_{1}}+ \psi\dfrac{\partial A_{2}}{\partial x_{1}}-A_{1}\dfrac{\partial \psi}{\partial x_{2}}-\psi\dfrac{\partial A_{1}}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} \nonumber\\ & = \begin{bmatrix} A_{3}\dfrac{\partial \psi}{\partial x_{2}}-A_{2}\dfrac{\partial \psi}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1}\dfrac{\partial \psi}{\partial x_{3}}-A_{3}\dfrac{\partial \psi}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{2}\dfrac{\partial \psi}{\partial x_{1}}-A_{1}\dfrac{\partial \psi}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} + \begin{bmatrix} \psi\dfrac{\partial A_{3}}{\partial x_{2}}-\psi\dfrac{\partial A_{2}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \psi\dfrac{\partial A_{1}}{\partial x_{3}}-\psi\dfrac{\partial A_{3}}{\partial x_{1}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \psi\dfrac{\partial A_{2}}{\partial x_{1}}-\psi\dfrac{\partial A_{1}}{\partial x_{2}}\vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} = \underbrace{ \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial \psi}{\partial x_{1}} & \dfrac{\partial\psi}{\partial x_{2}} & \dfrac{\partial\psi}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1} & A_{2} & A_{3} \vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix}}_{\boldsymbol{\nabla}\psi\boldsymbol{\times}\mathbf{A}} + \psi\, \underbrace{ \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{1}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{2}} & \dfrac{\partial\hphantom{ x_{1}}}{\partial x_{3}}\vphantom{\dfrac{\dfrac{}{}}{}}\\ A_{1} & A_{2} & A_{3} \vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix}}_{\boldsymbol{\nabla}\boldsymbol{\times}\mathbf{A}} \nonumber\\ & =\boldsymbol{\nabla}\psi\boldsymbol{\times}\mathbf{A}+\psi\boldsymbol{\nabla}\boldsymbol{\times}\mathbf{A} \tag{04} \end{align}


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...