Suppose I have an Atwood machine, that is, two different masses connected with an inextensible, massless rope over a pulley. Assuming no friction between the rope and the pulley, the heavier mass will accelerate towards the ground, the lighter mass will accelerate towards the pulley, and the rope will accelerate towards the heavier mass. These three accelerations will be equal in magnitude. But this makes no sense to me. Force causes acceleration. But there is no force acting on the rope. And even if there was, the acceleration of the rope would be infinite because its mass is 0. So why does the rope accelerate? And how can the magnitude of this acceleration be finite?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Problem Statement: Imagine a spherical ball is dropped from a height $h$, into a liquid. What is the maximum average height of the displaced...
-
In most books (like Cardy's) relations between critical exponents and scaling dimensions are given, for example $$ \alpha = 2-d/y_t, \;\...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
No comments:
Post a Comment