The claim is often made that the discovery of the Higgs boson will give us information about the origin of mass. However, the bare masses of the up and down quarks are only around 5 MeV, quite a bit smaller than their "constituent" or "dynamical" mass of around 300 MeV. (Remember that a neutron, for example, is one up and two down quarks and has a total mass of 939 MeV.) What then, is the reasoning behind the claim that the Higgs will address the origin of mass when by far the majority of the mass of the neutron (and proton) is related instead to the dynamical breaking of chiral symmetry?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Problem Statement: Imagine a spherical ball is dropped from a height $h$, into a liquid. What is the maximum average height of the displaced...
-
In most books (like Cardy's) relations between critical exponents and scaling dimensions are given, for example $$ \alpha = 2-d/y_t, \;\...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
No comments:
Post a Comment