The claim is often made that the discovery of the Higgs boson will give us information about the origin of mass. However, the bare masses of the up and down quarks are only around 5 MeV, quite a bit smaller than their "constituent" or "dynamical" mass of around 300 MeV. (Remember that a neutron, for example, is one up and two down quarks and has a total mass of 939 MeV.) What then, is the reasoning behind the claim that the Higgs will address the origin of mass when by far the majority of the mass of the neutron (and proton) is related instead to the dynamical breaking of chiral symmetry?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
I stand up and I look at two parallel railroad tracks. I find that converge away from me. Why? Can someone explain me why parallel lines s...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
No comments:
Post a Comment