I was working out the math of Gauge Invariance of Schrodinger Equation. Gauge transformations on my ψ, and the fields →A, and A0 are ψ(x)→eiα(x)ψ(x)→A→→A+1q→∇α(x,t)A0→A0−1q∂0α(x,t)
I need to show that i∂ψ′∂t=H′ψ′⟹i∂ψ∂t=Hψ
where my Hamiltonian is given by H=12m(p−qA)2+qA0
First I try the kinetic energy term, \begin{eqnarray*} (p-qA')^2 \psi' &=& \left(-i \vec\nabla -qA-\vec\nabla\alpha\right)^2 (e^{i\alpha} \psi)\\ &=&\left(i \vec\nabla +qA+\vec\nabla\alpha\right)\left(i \vec\nabla +qA+\vec\nabla\alpha\right) (e^{i\alpha} \psi)\\ &=& \left(i \vec\nabla +qA+\vec\nabla\alpha\right) \left[ ie^{i\alpha}\vec\nabla\psi +qAe^{i\alpha}\psi \right]\\ &=& %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \vec\nabla \left( e^{i\alpha}\vec\nabla\psi\right) +i \vec\nabla\left(qAe^{i\alpha}\psi \right) +\left(qA+\vec\nabla\alpha\right) \left[ ie^{i\alpha}\vec\nabla\psi +qAe^{i\alpha}\psi \right]\\ \end{eqnarray*}
Answer
The problem is also solved if →∇A is non-zero. Your last line equals eiα(−Δψ+iq(→∇⋅→A)ψ+2iq→A⋅→∇ψ+(q→A)2ψ).
Note that this is the same as eiα(→p−q→A)(→p−q→A)ψ.
Edit to respond to comment.
You already did everything correctly in your question, →p−q→A acts as follows on a wave function ψ(x): ((→p−q→A)ψ)(x)=−iℏ→∇ψ(x)−q→A(x)ψ(x)
No comments:
Post a Comment