Saturday, 12 December 2015

homework and exercises - Gauge Invariance of Schrodinger Equation


I was working out the math of Gauge Invariance of Schrodinger Equation. Gauge transformations on my $\psi$, and the fields $\vec{A}$, and $A_0$ are \begin{eqnarray*} \psi(x)&\rightarrow& e^{i\alpha(x)} \psi(x)\\ \vec A &\rightarrow& \vec A + \frac{1}{q} \vec\nabla \alpha(x,t)\\ A_0 &\rightarrow& A_0 - \frac{1}{q} \partial_0 \alpha(x,t) \end{eqnarray*}



I need to show that \begin{eqnarray*} i \frac{\partial \psi'}{\partial t}&=& H' \psi'\\ \implies i \frac{\partial \psi}{\partial t}&=& H \psi \end{eqnarray*} where my Hamiltonian is given by \begin{eqnarray*} H=\frac{1}{2m}(p-qA)^2 + qA_0 \end{eqnarray*}




First I try the kinetic energy term, \begin{eqnarray*} (p-qA')^2 \psi' &=& \left(-i \vec\nabla -qA-\vec\nabla\alpha\right)^2 (e^{i\alpha} \psi)\\ &=&\left(i \vec\nabla +qA+\vec\nabla\alpha\right)\left(i \vec\nabla +qA+\vec\nabla\alpha\right) (e^{i\alpha} \psi)\\ &=& \left(i \vec\nabla +qA+\vec\nabla\alpha\right) \left[ ie^{i\alpha}\vec\nabla\psi +qAe^{i\alpha}\psi \right]\\ &=& %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \vec\nabla \left( e^{i\alpha}\vec\nabla\psi\right) +i \vec\nabla\left(qAe^{i\alpha}\psi \right) +\left(qA+\vec\nabla\alpha\right) \left[ ie^{i\alpha}\vec\nabla\psi +qAe^{i\alpha}\psi \right]\\ \end{eqnarray*} Now, I am worried about the second term in the last line above, $i \vec\nabla\left(qAe^{i\alpha}\psi\right)$. I assume that should be \begin{eqnarray*} i \vec\nabla\left(qAe^{i\alpha}\psi\right) = iq\left(\vec\nabla A\right)e^{i\alpha}\psi +iqA\left(\vec\nabla e^{i\alpha}\right)\psi +iqAe^{i\alpha}\left(\vec\nabla\psi\right) \end{eqnarray*} My problem isn't solved unless $\vec \nabla A$ is zero. Now, is it zero? What is it anyway? Divergence of $\vec A$ or gradient of $\vec A$? If it's divergence, then that is zero only in electrostatics. If it is a gradient, then it has some other tensor component.



Answer



The problem is also solved if $\vec\nabla A$ is non-zero. Your last line equals $$ \mathrm e^{\mathrm i\alpha} \left( -\Delta \psi + \mathrm i q\, (\vec\nabla \cdot \vec A)\, \psi + 2 \mathrm i q\, \vec A \cdot \vec\nabla \psi + (q\vec A)^2\, \psi\right) \;. $$


Note that this is the same as $$ \mathrm e^{\mathrm i\alpha}\, ( \vec p - q\vec A ) ( \vec p - q\vec A )\, \psi \;. $$


Edit to respond to comment.


You already did everything correctly in your question, $\vec p - q\vec A$ acts as follows on a wave function $\psi(x)$: $$ (( \vec p - q\vec A ) \psi)(x) = -\mathrm i\hbar\, \vec \nabla \psi(x) - q\vec A(x)\, \psi(x) $$ If you act again from the left with $\vec p - q\vec A$, you just take the inner product. Thinking about this in terms of gradients, divergences etc is possible but not too helpful, it's better to just think in components: $$ (( \vec p - q\vec A )^2 \psi)(x) = \sum_{i=1}^3 \bigl( -\mathrm i\hbar\, \partial_i - q A_i(x) \bigr) \bigl( -\mathrm i\hbar\, \partial_i \psi(x) - q A_i(x)\, \psi(x) \bigr) $$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...