I'm interested in learning about topological QFT including Chern Simons theory, Jones polynomial, Donaldson theory and Floer homology - basically the kind of things Witten worked on in the 80s. I'm looking for pedagogical reviews rather than original articles. Though these things sit at the interface of mathematics and physics I'm interested in them more as a physics student. I remember someone asking for a suggested reading list for topological QFT in mathoverflow. The suggested papers were almost uniformly rigorous mathematics written by mathematicians. I am not looking for something like that.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
The gravitation formula says F=Gm1m2r2,so if the mass of a bob increases then the torque on it should also increase...
-
Problem Statement: Imagine a spherical ball is dropped from a height h, into a liquid. What is the maximum average height of the displaced...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Inspired by Polyomino Z pentomino and rectangle packing into rectangle Also in this series: Tiling rectangles with F pentomino plus rectangl...
No comments:
Post a Comment