Monday, 3 October 2016

quantum mechanics - Confused over complex representation of the wave


My quantum mechanics textbook says that the following is a representation of a wave traveling in the +$x$ direction:$$\Psi(x,t)=Ae^{i\left(kx-\omega t\right)}\tag1$$


I'm having trouble visualizing this because of the imaginary part. I can see that (1) can be written as:$$\Psi(x,t)=A \left[\cos(kx-\omega t)+i\sin(kx-\omega t)\right]\tag2$$


Therefore, it looks like the real part is indeed a wave traveling in the +$x$ direction. But what about the imaginary part? The way I think of it, a wave is a physical "thing" but equation (2) doesn't map neatly into my conception of the wave, due to the imaginary part. If anyone could shed some light on this kind of representation, I would appreciate it.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...