My quantum mechanics textbook says that the following is a representation of a wave traveling in the +$x$ direction:$$\Psi(x,t)=Ae^{i\left(kx-\omega t\right)}\tag1$$
I'm having trouble visualizing this because of the imaginary part. I can see that (1) can be written as:$$\Psi(x,t)=A \left[\cos(kx-\omega t)+i\sin(kx-\omega t)\right]\tag2$$
Therefore, it looks like the real part is indeed a wave traveling in the +$x$ direction. But what about the imaginary part? The way I think of it, a wave is a physical "thing" but equation (2) doesn't map neatly into my conception of the wave, due to the imaginary part. If anyone could shed some light on this kind of representation, I would appreciate it.
No comments:
Post a Comment