Wednesday, 2 November 2016

optics - why does the graph of deviation angle in a prism doesn't get a symmetry?


According to (i1+i2)-A , the graph of i1- and the angle of deviation shows below.


enter image description here


This graph is not symmetrical. It usually oriented to right. According to above equation I can generally understand why doesn't it get a symmetry. But I can't see a way of describe this ,theoretically why is it not symmetrical.



I searched this in so many resources, but I couldn't find a satisfied answer. So, I hope a theoretical answer, for this problem, not a mathematical description.



Answer



enter image description here


$\color{red}{\delta^{*}}$=minimum deviation angle.


$\color{red}{\mathrm{i}1^{*}}$=incident angle for minimum deviation.


$\color{blue}{\mathrm{i}1^{\boldsymbol{+}}}$=incident angle $\mathrm{i}1^{*}$ plus a variation $\:\theta$.


$\color{green}{\mathrm{i}1^{\boldsymbol{-}}}$=incident angle $\mathrm{i}1^{*}$ minus a variation $\:\theta$.


$\color{blue}{\delta^{\boldsymbol{+}}}$= deviation if incident angle equals $\mathrm{i}1^{\boldsymbol{+}}$.


$\color{green}{\delta^{\boldsymbol{-}}}$= deviation if incident angle equals $\mathrm{i}1^{\boldsymbol{-}}$.


Result : $\delta^{\boldsymbol{+}}\ne\delta^{\boldsymbol{-}}$.





The drawing is sketched with the following data and calculations: \begin{align} \mathrm A & = \text{prism angle}= 60^{\rm o} \tag{01}\\ n_{1} & = \text{refraction index of surroundings}= 1.00 \tag{02}\\ n_{2} & = \text{refraction index of prism}= 1.50 \tag{03}\\ n & = \text{relative refraction index}=1/1.50=0.6667 \tag{04}\\ \mathrm i1^{\boldsymbol{*}} & = \text{incident angle of minimum deviation}= \arcsin\left(n\sin\tfrac{\mathrm A}{2}\right)=48.59^{\rm o} \tag{05}\\ & \text{minimum deviation path (red) } : 48.59^{\rm o} \Longrightarrow 30^{\rm o} \Longrightarrow 30^{\rm o} \Longrightarrow 48.59^{\rm o} \tag{06}\\ \delta^{*} & = \text{minimum deviation angle}=2\cdot\mathrm i1^{\boldsymbol{*}}-\mathrm A=37.18^{\rm o} \tag{07}\\ \theta & = \text{variation angle}=20^{\rm o} \tag{08}\\ \mathrm{i}1^{\boldsymbol{+}} & = \mathrm i1^{\boldsymbol{*}}+\theta=68.59^{\rm o} \tag{09}\\ \mathrm{i}1^{\boldsymbol{+}} & \text{ deviation path (blue) } : 68.59^{\rm o} \Longrightarrow 38.36^{\rm o} \Longrightarrow 21.64^{\rm o} \Longrightarrow 33.58^{\rm o} \tag{10}\\ \delta^{\boldsymbol{+}} & = \text{deviation angle if incident angle equals }\mathrm{i}1^{\boldsymbol{+}} =42.17^{\rm o} \tag{11}\\ \mathrm{i}1^{\boldsymbol{-}} & = \mathrm i1^{\boldsymbol{*}}-\theta=28.59^{\rm o} \tag{12}\\ \mathrm{i}1^{\boldsymbol{-}} & \text{ deviation path (green) } : 28.59^{\rm o} \Longrightarrow 18.60^{\rm o} \Longrightarrow 41.40^{\rm o} \Longrightarrow 82.70^{\rm o} \tag{13}\\ \delta^{\boldsymbol{-}} & = \text{deviation angle if incident angle equals }\mathrm{i}1^{\boldsymbol{-}} =51.29^{\rm o} \tag{14} \end{align}




enter image description here enter image description here enter image description here enter image description here enter image description here



There exists symmetry, but not in the sense of the question : Let a prism of angle A and a first experiment $\:\mathcal{F}\:$ with incident angle $\:(\mathrm{i}_{1})_{\mathcal{F}}\:$ on the left and emergent angle $\:(\mathrm{i}_{2})_{\mathcal{F}}\:$ from the right. The deviation angle is $\:\delta_{\mathcal{F}}=(\mathrm{i}_{1})_{\mathcal{F}}+(\mathrm{i}_{2})_{\mathcal{F}}-\mathrm{A}$. If in a second experiment $\:\mathcal{B}\:$ the incident angle is $\:(\mathrm{i}_{1})_{\mathcal{B}}=(\mathrm{i}_{2})_{\mathcal{F}}\:$ then for the emergent angle of $\:\mathcal{B}\:$ we have $\:(\mathrm{i}_{2})_{\mathcal{B}}=(\mathrm{i}_{1})_{\mathcal{F}}\:$ and for the deviation angle \begin{equation} \delta_{\mathcal{B}}=(\mathrm{i}_{1})_{\mathcal{B}}+(\mathrm{i}_{2})_{\mathcal{B}}-\mathrm{A}=(\mathrm{i}_{2})_{\mathcal{F}}+(\mathrm{i}_{1})_{\mathcal{F}}-\mathrm{A}\equiv \delta_{\mathcal{F}} \tag{015} \end{equation} This must be expected since (reversing or ignoring the direction of light rays) we have one and the same experiment, the first being its $\:\mathcal{F}$ront view and the second its $\:\mathcal{B}$ack view.



This symmetry is depicted as the symmetry of the graph of the function $\:\mathrm{i}_{2}(\mathrm{i}_{1})\:$ with respect to the main diagonal of the $\:\mathrm{i}_{1}-\mathrm{i}_{2}\:$ plane, see the last Figure above.




Related : Analytic solution for angle of minimum deviation?.



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...