As per Newton objects with mass attract each other, and per Einstein this is further explained by saying that mass warps space-time. So a massive object makes a "dent" into space-time, a gravity well. I have taken to visualizing this as placing a object on a rubber sheet and the resulting dent, being the gravity field. So obviously placing two objects on the sheet not to far from each other will make the dents overlap, and the object will roll towards each other. BUT for a BLACKHOLE, this is not a dent. It's a cut or rupture in the rubber sheet. Furthermore, space-time is constantly falling INTO the blackhole, and everything else that exists in space-time, including light. So a blackhole is not just a super-massive object, it's really a hole, and how can a hole move? How does it react to the gravity pull of a nearby object, when everything just falls thru it? Thanks!
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
Yesterday, I understood what it means to say that the moon is constantly falling (from a lecture by Richard Feynman ). In the picture below ...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
No comments:
Post a Comment