Saturday, 13 May 2017

homework and exercises - Electron in the proximity of a magnetic monopole



I am puzzling about an exercise in the book "Electromagnetic Theory" by Ferraro (p.543).


An electron (mass $m$, charge $-e$) in a monopole magnetic field $\vec{B}\left(\vec{r}\right)=g\frac{\vec{r}}{r^3}$ has due to the Lorentz force $\vec{F}_L=-e\vec{v}\times\vec{B}$ the following equation of motion:


$$m\ddot{\vec{r}}=-\frac{eg}{r^3}\dot{\vec{r}}\times\vec{r}.$$


Since $\vec{J}=\vec{r}\times\vec{p}+eg\frac{\vec{r}}{r}$ is constant, the electron moves on the surface of a cone, which tip is in the origin at $\vec{r}=0$. Mathematically, $\vec{r}\cdot\vec{J}=egr=rJ\cos\vartheta$, thus the angle $\vartheta$ between $\vec{r}$ and $\vec{J}$ is constant.


Now I use spherical coordinates:


$$\vec{r}=r\mathbf{e}_{r} $$ $$\vec{v}=\dot{\vec{r}}=\dot{r}\mathbf{e}_{r}+r\dot{\vartheta}\mathbf{e}_{\vartheta}+r\dot{\varphi}\sin\vartheta\mathbf{e}_{\varphi}$$ $$\vec{a}=\ddot{\vec{r}}=\left(\ddot{r}-r\dot{\vartheta}^{2}-r\dot{\varphi}^{2}\sin^{2}\vartheta\right)\mathbf{e}_{r}+\left(2\dot{r}\dot{\vartheta}+r\ddot{\vartheta}-r\dot{\varphi}^{2}\sin\vartheta\cos\vartheta\right)\mathbf{e}_{\vartheta}+\left(2\dot{r}\dot{\varphi}\sin\vartheta+2r\dot{\vartheta}\dot{\varphi}\cos\vartheta+r\ddot{\varphi}\sin\vartheta\right)\mathbf{e}_{\varphi} $$


and obtain the following equations of motion (using $\dot{\vartheta}=0$):


$$\ddot{r}=r\dot{\varphi}^2\sin^2\vartheta \qquad(1)$$ $$r\dot{\varphi}^2\cos\vartheta=\frac{eg}{mr}\dot{\varphi} \qquad(2)$$ $$2\dot{r}\dot{\varphi}+r\ddot{\varphi}=0 \qquad(3)$$ with the boundary conditions: $$r\left(0\right)=r_0\qquad\varphi\left(0\right)=0.$$


In order to solve (1) for $r\left(t\right)$, one has to use the fact that the kinetic energy $\frac{1}{2}m\vec{v}^2$ is conserved. This holds due to the vector potential $\vec{A}=\frac{1}{2}\vec{B}\times\vec{r}=0$. Therefore, $$\vec{v}^2=\dot{r}^2+r^2\dot{\varphi}^2\sin^2\vartheta\equiv u^2=\text{const}$$


Using this in (1) one gets the simplified differential equation: $$r\ddot{r}=u^2-\dot{r}^2\qquad(4)$$



Does anyone know how to derive the following solution of (4)? $$r\left(t\right)=r_0\sqrt{1+\left(\frac{ut}{r_0}\right)^2}\qquad(5)$$


Solving (2) for $\dot{\varphi}$: $$\dot{\varphi}=\frac{eg}{mr^2\cos\vartheta}$$


and inserting (5) I obtain: $$\varphi\left(t\right)=\frac{eg}{mr_0u\cos\vartheta}\arctan{\frac{ut}{r_0}}.$$


Now the solutions says: $$r\left(\varphi\right)=\frac{r_0}{\cos\left(\varphi\sin\vartheta\right)}.$$


But I get something similar, but not equal: $$r\left(\varphi\right)=\frac{r_0}{\cos\left(\frac{mr_0u\cos\vartheta}{eg}\varphi\right)}.$$


Has anyone an idea where I could have done something wrong?



Answer



Actually, I don't have to use the conservation of the kinetic energy. With a slightly different procedure, one gets another simplified differential equation.


Inserting (2) in (1):


$$\ddot{r}=\frac{e^2 g^2 \tan^2\vartheta}{m^2} \frac{1}{r^3}$$



Now look at:


$$\frac{\text{d}}{\text{dt}}\dot{r}^2=2\dot{r}\ddot{r}=\frac{e^2 g^2 \tan^2\vartheta}{m^2} \frac{2\dot{r}}{r^3}=\frac{\text{d}}{\text{dt}}\left(\frac{e^2 g^2 \tan^2\vartheta}{m^2}\frac{-1}{r^2}\right)$$


Thus, a simpler differential equation is obtained ($C=\text{const}$):


$$\dot{r}^2=\frac{e^2 g^2 \tan^2\vartheta}{m^2}\frac{-1}{r^2}+C$$


and can be solved by separation of variables:


$$\text{dt}=\frac{r\text{ dr}}{\sqrt{Cr^2-\frac{e^2 g^2 \tan^2\vartheta}{m^2}}}$$


$$t=\frac{1}{C}\sqrt{Cr^2-\frac{e^2 g^2 \tan^2\vartheta}{m^2}}+t_0$$


With $t_0=0$ and $r\left(0\right)=r_0$:


$$r\left(t\right)=\sqrt{\frac{e^2 g^2 \tan^2\vartheta}{m^2r_0^2}t^2+r_0^2}$$


Now solving for $\varphi\left(t\right)$ from (2):



$$\dot{\varphi}=\frac{eg}{m\cos\vartheta}\frac{1}{r^2}$$


$$\text{d}\varphi=\frac{m\cos\vartheta r_0^2}{eg\sin^2\vartheta}\frac{\text{dt}}{t^2+\left(\frac{m r_0^2}{e g \tan\vartheta}\right)^2}$$


Using the arctangent integral:


$$\int\frac{\text{dt}}{t^2+b^2}=\frac{1}{b}\arctan\frac{t}{b}$$


and $\varphi\left(0\right)=0$, one obtains:


$$\varphi\left(t\right)=\frac{1}{\sin\vartheta}\arctan\frac{e g \tan\vartheta\ t}{m r_0^2} $$


Finally,


$$r\left(\varphi\right)=r_0 \sqrt{\tan^2\left(\sin\vartheta \varphi\right)+1}=\frac{r_0}{\cos\left(\sin\vartheta\varphi\right)}$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...