This question maybe related to Feynman Propagator in Position Space through Schwinger Parameter. The Feynman propagator is defined as: GF(x,y)=lim = \begin{cases} -\frac{1}{4 \pi} \delta(s) + \frac{m}{8 \pi \sqrt{s}} H_1^{(1)}(m \sqrt{s}) & s \geq 0 \\ -\frac{i m}{ 4 \pi^2 \sqrt{-s}} K_1(m \sqrt{-s}) & s < 0\end{cases}
using (+,-,-,-) Minkowski signature convention.
If one wants to apply the trick of Wick rotation, then one should know the position of the poles. It's easy to see that the poles p_0 of \Delta(p)=\frac{1}{p^2 - m^2 + i\epsilon} are p_0 = \pm (\omega - i\epsilon). Then, my question is what's the poles x_0 or t of \Delta(x) = G_{F,\epsilon}(x) = \int d^4p \, \frac{e^{-ip x}}{p^2 - m^2 + i\epsilon}.
I have tried as following:
Because \Delta(p) = \frac{1}{p^2-m^2+i\epsilon} = -i \int_0^\infty d\alpha ~e^{i(p^2 - m^2 +i\epsilon)\alpha} Thus \Delta(x) = \int \frac{d^4 p}{(2\pi)^4} e^{-ipx} \Delta(p) \\ = -i \int_0^\infty d\alpha \int \frac{d^4 p}{(2\pi)^4} ~e^{-ipx+i(p^2 - m^2 +i\epsilon)\alpha} \\ = -i \int_0^\infty d\alpha \frac{1}{(2\pi)^4} [-i\pi^2\alpha^{-2} e^{\frac{-ix^2}{4\alpha}-i(m^2-i\epsilon)\alpha}] Let \beta = \frac{1}{\alpha}, then we get \frac{-1}{16\pi^2} \int_0^\infty d\beta~ e^{-\frac{i\beta x^2}{4}-\frac{i(m^2-i\epsilon)}{\beta}} But how to do the last integration and what's the poles x_0?
ps: This material by Yuri Makeenko (page 8) gives a figure to show poles and the directions of Wick rotation. 
Answer
There is an integration formula (see "Table of integrals, series and products" 7ed, p337 section3.324 1st integral) \int_0^\infty d\beta \exp\left[-\frac{A}{4\beta}-B\beta\right]=\sqrt{\frac{A}{B}}K_1\left(\sqrt{AB}\right)\qquad [\mathrm{Re}A\ge0, \mathrm{Re}B>0]. If \mathrm{Re}A\ge0, \mathrm{Re}B>0 is violated, the integral will be divergence.
In your case, A=4(im^2+\epsilon) and B=ix^2/4, so \mathrm{Re}A=4\epsilon>0 and \mathrm{Re}B=0 which does not satisfy the convergent condition. Therefore, to guarantee the convergence of the integral, we should treat B=ix^2/4 as the limit B=\lim_{\epsilon'\rightarrow0+}i(x^2-i\epsilon')/4. Thus we have \Delta(x)=\lim_{\epsilon,\epsilon'\rightarrow0+}\frac{-1}{16\pi^2}\int_0^\infty d\beta \exp\left[-\frac{i\beta (x^2-i\epsilon')}{4}-\frac{i(m^2-i\epsilon)}{\beta}\right]\\ =\lim_{\epsilon,\epsilon'\rightarrow0+}\frac{-1}{4\pi^2}\sqrt{\frac{m^2-i\epsilon}{x^2-i\epsilon'}}K_1\left(\sqrt{-(m^2-i\epsilon)(x^2-i\epsilon')}\right)\\ =\lim_{\epsilon'\rightarrow0+}\frac{-m}{4\pi^2\sqrt{x^2-i\epsilon'}}K_1\left(m\sqrt{-(x^2-i\epsilon')}\right) As a result, the singularity of the propagator is at x^2-i\epsilon=t^2-\mathbf{x}^2-i\epsilon=0, i.e. t=\pm(|\mathbf{x}|+i\epsilon).
Actually, the convergent condition of the integral restricts the analytic regime of \Delta(x): 0<\mathrm{Re}(ix^2)=\mathrm{Re}(it^2)=-\mathrm{Im}(t^2) i.e. (2n-1)\pi\le\arg(t^2)=2\arg(t)\le 2n\pi\\ (n-\frac{1}{2})\pi\le\arg(t)\le n\pi Therefore, \Delta(x) only can be analytically continued to the second and the forth quadrants in the complex plane of t. In conclusion, the wick rotation in t plane should be clockwise.
No comments:
Post a Comment