In Leslie E Balletine chapter 8 they state that for a state $\rho=|jm\rangle \langle jm|$ that is an eigenstate of $\mathbf{J}^2$ and $J_z$ we have that $\langle J_x\rangle=\langle J_y\rangle=0$ and $\langle J_x^2\rangle=\langle J_y^2\rangle$ How do you prove this? What are the physical implications?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
No comments:
Post a Comment