Wednesday, 4 April 2018

kinematics - Direction of velocity vector in 3D space


According to a well-known textbook (Halliday & Resnick), the direction of a velocity vector, $\vec v$, at any instant is the direction of the tangent to a particle's path at that instant, as is illustrated below in 2D.


enter image description here


According to the same textbook, the same holds for 3D. However, the tangent to a curve in 3D is not a line, but a plane! A vector could be in a plane and still take on any direction betwen $0^{\circ}$ and $360^{\circ}$ within that plane.


How do we define and determine the direction of $\vec v$ given a particle's path in 3D? (If possible, include illustrations in your answers).



Answer



Example with Figures on @JEB 's answer.



enter image description here


Let the regular (smooth) curve with parametric equation \begin{equation} \mathbf{x}\left(t\right)=\bigl[x_{1}\left(t\right),x_{2}\left(t\right),x_{3}\left(t\right)\bigr]=\left(5\cos t,5\sin t,2t\right) \tag{01} \end{equation} The parameter $\:t\:$ would represent time in case that this curve is the trajectory of a particle.


Now, the vector \begin{equation} \dfrac{\mathrm d\mathbf{x}}{\mathrm dt}=\Biggl(\dfrac{\mathrm dx_{1}}{\mathrm dt},\dfrac{\mathrm dx_{2}}{\mathrm dt},\dfrac{\mathrm dx_{3}}{\mathrm dt}\Biggr)=\left(-5\sin t,5\cos t,2\right) \tag{02} \end{equation} is tangent to the curve at the point $\:\mathbf{x}\left(t\right)\:$ and well-defined without any indeterminacy. In case of particle motion this is the velocity vector of the particle.


In order to normalize this vector we have \begin{equation} \left\Vert\dfrac{\mathrm d\mathbf{x}}{\mathrm dt}\right\Vert=\sqrt{29} \tag{03} \end{equation} This norm, the speed of the particle, is a function of $\:t\:$ in general. Here accidentally is constant. From (02) and (03) we produce the unit vector \begin{equation} \mathbf{t}=\dfrac{\dfrac{\mathrm d\mathbf{x}}{\mathrm dt}}{\left\Vert\dfrac{\mathrm d\mathbf{x}}{\mathrm dt}\right\Vert}=\sqrt{\frac{1}{29}}\left(-5\sin t,5\cos t,2\right) \tag{04} \end{equation} The vector $\:\mathbf{t}\left(t\right)\:$ is the unit tangent vector to the curve at point $\:\mathbf{x}\left(t\right)$. \begin{equation} \boxed{\:\mathbf{t}=\sqrt{\frac{1}{29}}\left(-5\sin t,5\cos t,2\right)\:} \tag{05} \end{equation} Differentiating again we have \begin{equation} \dfrac{\mathrm d\mathbf{t}}{\mathrm dt}=\sqrt{\frac{1}{29}}\left(-5\cos t,-5\sin t,0\right) \tag{06} \end{equation} a vector normal to $\:\mathbf{t}\:$ with norm \begin{equation} \left\Vert\dfrac{\mathrm d\mathbf{t}}{\mathrm dt}\right\Vert=5\sqrt{\frac{1}{29}} \tag{07} \end{equation} Again this norm is a function of $\:t\:$ in general. From (06) and (07) we produce the unit vector \begin{equation} \mathbf{n}=\dfrac{\dfrac{\mathrm d\mathbf{t}}{\mathrm dt}}{\left\Vert\dfrac{\mathrm d\mathbf{t}}{\mathrm dt}\right\Vert}=\left(-\cos t,-\sin t,0\right) \tag{08} \end{equation} The vector $\:\mathbf{n}\left(t\right)\:$ is the principal normal unit vector to the curve at point $\:\mathbf{x}\left(t\right)$. \begin{equation} \boxed{\:\mathbf{n}=\left(-\cos t,-\sin t,0\right)\vphantom{\sqrt{\frac{1}{29}}}\:} \tag{09} \end{equation}


Finally we construct the unit vector \begin{equation} \mathbf{b}=\mathbf{t}\boldsymbol{\times}\mathbf{n}=\sqrt{\frac{1}{29}} \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\vphantom{\dfrac{\dfrac{}{}}{}}\\ -5\sin t & 5\cos t & 2\vphantom{\dfrac{\dfrac{}{}}{}}\\ -\cos t & -\sin t & 0 \vphantom{\dfrac{\dfrac{}{}}{}} \end{bmatrix} =\sqrt{\frac{1}{29}}\left(2\sin t,-2\cos t,5\right) \tag{10} \end{equation} so \begin{equation} \boxed{\:\mathbf{b}=\sqrt{\frac{1}{29}}\left(2\sin t,-2\cos t,5\right)\vphantom{\sqrt{\frac{1}{29}}}\:} \tag{11} \end{equation} The vector $\:\mathbf{b}\left(t\right)\:$ is the unit binormal vector to the curve at point $\:\mathbf{x}\left(t\right)$.


The triad of vectors $\:\left(\mathbf{t},\mathbf{n},\mathbf{b}\right)\:$ forms a right-handed orthonormal triplet, as shown in Figures, called the moving trihedron. For the three planes, sides of the trihedron, we have the following terminology
\begin{align} \text{plane }\left(\mathbf{t},\mathbf{n}\right) & =\textit{Osculating plane} \tag{12a}\\ \text{plane }\! \left(\mathbf{n},\mathbf{b}\right) & =\textit{Normal plane} \tag{12b}\\ \text{plane }\left(\mathbf{b},\mathbf{t}\right) & =\textit{Rectifying plane} \tag{12c} \end{align}


----- 3D image 1 ----- 3D image 2 ----- 2D video ----- 3D video ----- The moving trihedron 3D video


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...