Wednesday 21 August 2019

quantum mechanics - Proving the unitary relation of ensemble decompositions


In my class it was told that ensemble decompositions of a density operator $\rho$ are not unique, but that the ones that exist are related by a unitary operator. I'm trying to prove this, but I get stuck somewhere along the way.


Lets begin by assuming two different decompositions of density operator $\rho$: $\rho = \sum_{j=1}^n{p_j|\psi_j\rangle\langle\psi_j|} = \sum_{k=1}^m{q_k|\phi_k\rangle\langle\phi_k|}$



Now, these two decompositions live in a Hilbert space $\mathcal A$. We can then define a purification of both, using a system described by a Hilbert space $\mathcal B$ of dimension $k=\max (n,m)$, so that we get $|\Psi_1\rangle_{\mathcal A\mathcal B} = \sum_{j=1}^n{\sqrt{p_j}|\psi_j\rangle \otimes |b_j\rangle}$ and $|\Psi_2\rangle_{\mathcal A\mathcal B} = \sum_{k=1}^m{\sqrt{q_k}|\phi_k\rangle \otimes |b_k\rangle}$.


Now, here we can use that as these pure states are purifications of the same density operator, there must be a unitary $U$ connecting them: $(1_A \otimes U_B)|\Psi_1\rangle_{\mathcal A\mathcal B} = |\Psi_2\rangle_{\mathcal A\mathcal B}$.


Here is where I get stuck. I should be able to use this to prove the unitary relation between the $\psi$ and the $\phi$, but it is not obvious to me how I should do this.


Update: after reviewing the comments to the first question, I should have written that the $\psi$ and $\phi$ states do NOT have to be orthonormal, per se.



Answer




We will prove the following Theorem:



Let $\rho=\sum_{i=1}^Np_i\lvert\phi_i\rangle\langle\phi_i\rvert$ be a eigenvalue decomposition and $\sigma=\sum_{i=1}^Mq_i\lvert\psi_i\rangle\langle\psi_i\rvert$ ($M\ge N$). Then, $\rho=\sigma$ if and only if \begin{equation} \sqrt{q_j}\lvert\psi_j\rangle=\sum_i v_{ij}\sqrt{p_i}\lvert\phi_i\rangle\ , \end{equation} with $\sum_j v_{ij}v_{i'j}^*=\sum_k \delta_{ii'}$, i.e., $V\equiv(v_{ij})$ is an isometry.




Proof:


The "if" direction is straightforward: \begin{align} \rho&=\sum_{j}q_j\lvert\psi_j\rangle\langle\psi_j\rvert\\ &=\sum_{i,i',j} v_{ij} v_{i'j}^* \sqrt{p_i}\sqrt{p_{i'}} \lvert\phi_i\rangle \langle\phi_{i'}\rvert \\ &=\sum_i p_i\lvert\phi_i\rangle \langle\phi_{i}\rvert = \sigma\ , \end{align} where in the last step we have used that $\sum_j v_{ij}v_{i'j}^*=\delta_{ii'}$.


To prove the converse, let $$ v_{ij} := \langle\phi_i\lvert\psi_j\rangle\,\sqrt{q_j/p_i}\ .$$ Then, $$ \sum_i v_{ij} \sqrt{p_i}\lvert\phi_i\rangle = \sum_i \lvert\phi_i\rangle\langle \phi_i\lvert\psi_j\rangle\sqrt{q_j} = \sqrt{q_j}\lvert\psi_j\rangle\ ,$$ i.e., $v_{ij}$ is the desired basis transformation. Further, $$ \sum_{ii'}\underbrace{\delta_{ii'}\sqrt{p_ip_{i'}}}_{=:a_{ii'}}\lvert\phi_i\rangle\langle\phi_i\rvert = \sum_ip_i\lvert\phi_i\rangle\langle\phi_i\rvert = \sum_jq_j\lvert\psi_j\rangle\langle\psi_j\rvert = \sum_{ii'}\underbrace{\sum_jv_{ij}v^*_{i'j}\sqrt{p_ip_i'}}_{=:b_{ii'}}\lvert\phi_i\rangle\langle\phi_{i'}\rvert\ . $$ Now, since the $\lvert\phi_i\rangle$ are orthogonal (as they form an eigenbasis), the $\lvert\phi_i\rangle\langle\phi_{i'}\rvert$ are linearly independent, and thus, $a_{ii'}=b_{ii'}$, which implies $\sum_jv_{ij}v^*_{i'j}=\delta_{ii'}$.





If the $\lvert\phi_i\rangle$ do not form an orthonormal basis, we can generalize the theorem by going through an orthonormal basis $\rho=\sum r_k\lvert\chi_k\rangle\langle\chi_k\rvert$: Then, \begin{align} \sqrt{p_i}\lvert\phi_i\rangle&=\sum_k u_{ki}\sqrt{r_k}\lvert\chi_k\rangle\\ \sqrt{q_j}\lvert\psi_j\rangle&=\sum_k w_{kj}\sqrt{r_k}\lvert\chi_k\rangle \end{align} with $\sum_i u_{ki}u_{k'i}^*=\delta_{kk'}$ and $\sum_j w_{kj}w_{k'j}=\delta_{kk'}$. The second equation then yields $\sqrt{r_k}\lvert\chi_k\rangle= \sum_j w_{kj}^*\sqrt{q_j}\lvert\psi_j\rangle$. After inserting this in the first equation, we obtain $$ \sqrt{q_j}\lvert\psi_j\rangle=\sum_i v_{ij}\sqrt{p_i}\lvert\phi_i\rangle $$ with $v_{ij} = \sum_k u_{ki}w_{kj}^*$, i.e., $V=UW^\dagger$ is a partial isometry.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...