Sunday, 9 August 2020

black holes - What's the proper distance from the event horizon to the singularity?


How far away is the event horizon of a (Schwarzschild) black hole away from the central singularity for a radially infalling observer starting with $v=0$ somewhere outside the black hole? After crossing the event horizon, such an observer hits the singularity in a finite time, hence such an observer would also assign a finite distance from the horizon to the singularity.


"Crossing the horizon" shall mean that the observer moves from outside the black hole (there are future world-lines, including non-radial and non-freefalling ones, that do /not/ hit the singularity) to inside the black hole (all future world lines hit the singularity).


The radius of a black hole is defined as follows: Take a ball $B$ in flat (Euclidean) space that has the same surface area like the event horizon of the black hole. Then the Schwarzschild radius of the black hole is defined to be the radius of $B$.


I'd guess that the so defined Schwarzschild radius is not the same (smaller?) like the proper distance from the event horizon to the center, but what is the ratio of these two values exactly, for example in terms of the mass $M$ of the black hole?


[EDIT]: Clarified that it's for a free falling observer.





No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...